并发服务器三种实现方式之进程、线程和select

简介: 这篇主要介绍如何实现并发服务器,主要通过三种方式:进程、线程和select函数来分别实现。

前言:刚开始学网络编程,都会先写一个客户端和服务端,不知道你们有没有试一下:再打开一下客户端,是连不上服务端的。还有一个问题不知道你们发现没:有时启服务器,会提示“Address already in use”,过一会就好了,想过为啥么?在这篇博客会解释这个问题。

但现实的服务器都会连很多客户端的,像阿里服务器等,所以这篇主要介绍如何实现并发服务器,主要通过三种方式:进程、线程和select函数来分别实现。

 一、进程实现并发服务器
先说下什么是并发服务器吧?不是指有多个服务器同时运行,而是可以同时连接多个客户端。

先简单说下原理吧,先画个图,如下:
_1
先要搞清楚通信的流程,图上参数说明:

  lfd:socket函数的返回值,就是监听描述符

  cfd1/cfd2/cfd3:accept函数的返回值,用通信的套接字

  server:服务器

  client:客户端

  socket通信过程中,总共有几个套接字呢?答:三个,客户端一个,服务器两个。

根据上图来大致说明一下流程:

客户端创建一个套接字描述符,用于通信,服务器先用socket函数创建套接字,用于监听客户端,然后调用accept函数,会返回一个套接字,用于通信的。图上就是,client1先通过cfd与server建立连接,然后与cfd1建立连接通信,这时lfd就空闲了,再监听客户端,client2再与lfd连接,再跟cfd2通信。client3也是如此。

现在问题就是。如何创建多个进程与客户端通信呢?通过循环创建子进程就可以实现这个问题

服务端程序,如下:

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <sys/wait.h>
#include <ctype.h>
#include <unistd.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

void do_sigchild(int num)
{
    while (waitpid(0, NULL, WNOHANG) > 0)
        ;
}

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];
    int i, n;
    pid_t pid;
    struct sigaction newact;

    newact.sa_handler = do_sigchild;
    sigemptyset(&newact.sa_mask);
    newact.sa_flags = 0;
    sigaction(SIGCHLD, &newact, NULL);    //建立信号,处理子进程退出

    listenfd = Socket(AF_INET, SOCK_STREAM, 0);

    // int opt = 1;
    //setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));    //端口复用

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);

    Bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    Listen(listenfd, 20);

    printf("Accepting connections ...\n");
    while (1) {
        cliaddr_len = sizeof(cliaddr);
        connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);
        pid = fork();
        if (pid == 0) {
            Close(listenfd);
            while (1) {
                n = Read(connfd, buf, MAXLINE);
                if (n == 0) {
                    printf("the other side has been closed.\n");
                    break;
                }
                printf("received from %s at PORT %d\n",
                        inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));
                for (i = 0; i < n; i++)
                    buf[i] = toupper(buf[i]);
                Write(STDOUT_FILENO, buf, n);
                Write(connfd, buf, n);
            }
            Close(connfd);
            return 0;
        } else if (pid > 0) {
            Close(connfd);
        }  else
            perr_exit("fork");
    }
    return 0;
}

客户端程序如下:

/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, n;

    sockfd = Socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr);
    servaddr.sin_port = htons(SERV_PORT);

    Connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    while (fgets(buf, MAXLINE, stdin) != NULL) {
        Write(sockfd, buf, strlen(buf));
        n = Read(sockfd, buf, MAXLINE);
        if (n == 0) {
            printf("the other side has been closed.\n");
            break;
        }
        else
            Write(STDOUT_FILENO, buf, n);
    }

    Close(sockfd);

    return 0;
}

演示效果,服务器可以同时处理两个客户端,如下:
_2

但我想再测试一下程序,执行./server,发现有个bind error,如下:
_3

下面来解释一下这个问题:

先来一张图片(出自UNP),如下:
_4

这张图将三次握手、四次挥手和TCP状态转换图,这些在我的这篇博客都由介绍,可以参考一下:https://www.cnblogs.com/liudw-0215/p/9661583.html

注意最后有一个TIME_WAIT状态,主动关闭一端会经历2MSL时长等待(大约40秒),再变为最开始的状态CLOSED。

复现上面的“bind error”,只需退出服务器,在启服务器,就会报出此错。因为主动关闭一端,会经历2MSL时长,端口IP会被占用,所以会报“bind error”。

但可能会问:为啥先退出客户端没有此问题?因为客户端没有调用bind函数地址结构,会“隐式”生成端口。

有没有方法可以解决这个问题呢?当然有的,调用函数setsockopt即可,服务端程序如下:

#include <stdio.h>
#include <string.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <signal.h>
#include <sys/wait.h>
#include <ctype.h>
#include <unistd.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

void do_sigchild(int num)
{
    while (waitpid(0, NULL, WNOHANG) > 0)
        ;
}

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];
    int i, n;
    pid_t pid;
    struct sigaction newact;

    newact.sa_handler = do_sigchild;
    sigemptyset(&newact.sa_mask);
    newact.sa_flags = 0;
    sigaction(SIGCHLD, &newact, NULL);    //建立信号,处理子进程退出

    listenfd = Socket(AF_INET, SOCK_STREAM, 0);

    int opt = 1;
    setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &opt, sizeof(opt));    //端口复用

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
    servaddr.sin_port = htons(SERV_PORT);

    Bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    Listen(listenfd, 20);

    printf("Accepting connections ...\n");
    while (1) {
        cliaddr_len = sizeof(cliaddr);
        connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);
        pid = fork();
        if (pid == 0) {
            Close(listenfd);
            while (1) {
                n = Read(connfd, buf, MAXLINE);
                if (n == 0) {
                    printf("the other side has been closed.\n");
                    break;
                }
                printf("received from %s at PORT %d\n",
                        inet_ntop(AF_INET, &cliaddr.sin_addr, str, sizeof(str)),ntohs(cliaddr.sin_port));
                for (i = 0; i < n; i++)
                    buf[i] = toupper(buf[i]);
                Write(STDOUT_FILENO, buf, n);
                Write(connfd, buf, n);
            }
            Close(connfd);
            return 0;
        } else if (pid > 0) {
            Close(connfd);
        }  else
            perr_exit("fork");
    }
    return 0;
}

二、线程实现并发服务器

理解了进程的方式,就是创建多个线程来实现,就不过多解释了,程序需要对线程有一定了解,之后我还会写篇博客来介绍线程,敬请期待哦。

服务器代码如下,有有详细的解释:

#include <stdio.h>
#include <string.h>
#include <arpa/inet.h>
#include <pthread.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>

#include "wrap.h"

#define MAXLINE 8192
#define SERV_PORT 8000

struct s_info {                     //定义一个结构体, 将地址结构跟cfd捆绑
    struct sockaddr_in cliaddr;
    int connfd;
};

void *do_work(void *arg)
{
    int n,i;
    struct s_info *ts = (struct s_info*)arg;
    char buf[MAXLINE];
    char str[INET_ADDRSTRLEN];      //#define INET_ADDRSTRLEN 16  可用"[+d"查看

    while (1) {
        n = Read(ts->connfd, buf, MAXLINE);                     //读客户端
        if (n == 0) {
            printf("the client %d closed...\n", ts->connfd);
            break;                                              //跳出循环,关闭cfd
        }
        printf("received from %s at PORT %d\n",
                inet_ntop(AF_INET, &(*ts).cliaddr.sin_addr, str, sizeof(str)),
                ntohs((*ts).cliaddr.sin_port));                 //打印客户端信息(IP/PORT)

        for (i = 0; i < n; i++) 
            buf[i] = toupper(buf[i]);                           //小写-->大写

        Write(STDOUT_FILENO, buf, n);                           //写出至屏幕
        Write(ts->connfd, buf, n);                              //回写给客户端
    }
    Close(ts->connfd);

    return (void *)0;
}

int main(void)
{
    struct sockaddr_in servaddr, cliaddr;
    socklen_t cliaddr_len;
    int listenfd, connfd;
    pthread_t tid;
    struct s_info ts[256];      //根据最大线程数创建结构体数组.
    int i = 0;

    listenfd = Socket(AF_INET, SOCK_STREAM, 0);                     //创建一个socket, 得到lfd

    bzero(&servaddr, sizeof(servaddr));                             //地址结构清零
    servaddr.sin_family = AF_INET;
    servaddr.sin_addr.s_addr = htonl(INADDR_ANY);                   //指定本地任意IP
    servaddr.sin_port = htons(SERV_PORT);                           //指定端口号 8000

    Bind(listenfd, (struct sockaddr *)&servaddr, sizeof(servaddr)); //绑定

    Listen(listenfd, 128);      //设置同一时刻链接服务器上限数

    printf("Accepting client connect ...\n");

    while (1) {
        cliaddr_len = sizeof(cliaddr);
        connfd = Accept(listenfd, (struct sockaddr *)&cliaddr, &cliaddr_len);   //阻塞监听客户端链接请求
        ts[i].cliaddr = cliaddr;
        ts[i].connfd = connfd;

        /* 达到线程最大数时,pthread_create出错处理, 增加服务器稳定性 */
        pthread_create(&tid, NULL, do_work, (void*)&ts[i]);
        pthread_detach(tid);                                                    //子线程分离,防止僵线程产生.
        i++;
    }

    return 0;
}

客户端代码如下:

/* client.c */
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "wrap.h"

#define MAXLINE 80
#define SERV_PORT 8000

int main(int argc, char *argv[])
{
    struct sockaddr_in servaddr;
    char buf[MAXLINE];
    int sockfd, n;

    sockfd = Socket(AF_INET, SOCK_STREAM, 0);

    bzero(&servaddr, sizeof(servaddr));
    servaddr.sin_family = AF_INET;
    inet_pton(AF_INET, "127.0.0.1", &servaddr.sin_addr.s_addr);
    servaddr.sin_port = htons(SERV_PORT);

    Connect(sockfd, (struct sockaddr *)&servaddr, sizeof(servaddr));

    while (fgets(buf, MAXLINE, stdin) != NULL) {
        Write(sockfd, buf, strlen(buf));
        n = Read(sockfd, buf, MAXLINE);
        if (n == 0)
            printf("the other side has been closed.\n");
        else
            Write(STDOUT_FILENO, buf, n);
    }

    Close(sockfd);

    return 0;
}

三、select实现并发服务器
select和进程主要区别在于,进程是阻塞的,而select是交给内核自己来实现的,由于select比较复杂,参考另一篇博客:

文章来源:https://www.cnblogs.com/liudw-0215/p/9664204.html
推荐阅读:https://www.roncoo.com/article/index?title=%E5%B9%B6%E5%8F%91

相关文章
|
13天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
1月前
|
弹性计算
阿里云3M带宽云服务器并发多大?阿里云3M带宽云服务器测评参考
在探讨云服务器3M带宽能支持多大并发这一问题时,我们首先要明白一个关键点:并发量并非仅由带宽决定,还与网站本身的大小密切相关。一般来说,一个优化良好的普通网站页面大小可能只有几K,为便于计算,我们可以暂且假定每个页面大小为50K。
819 1
|
5天前
|
安全 Java
深入理解 Java 多线程和并发工具类
【4月更文挑战第19天】本文探讨了Java多线程和并发工具类在实现高性能应用程序中的关键作用。通过继承`Thread`或实现`Runnable`创建线程,利用`Executors`管理线程池,以及使用`Semaphore`、`CountDownLatch`和`CyclicBarrier`进行线程同步。保证线程安全、实现线程协作和性能调优(如设置线程池大小、避免不必要同步)是重要环节。理解并恰当运用这些工具能提升程序效率和可靠性。
|
7天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
7 0
|
10天前
|
Java API 调度
安卓多线程和并发处理:提高应用效率
【4月更文挑战第13天】本文探讨了安卓应用中多线程和并发处理的优化方法,包括使用Thread、AsyncTask、Loader、IntentService、JobScheduler、WorkManager以及线程池。此外,还介绍了RxJava和Kotlin协程作为异步编程工具。理解并恰当运用这些技术能提升应用效率,避免UI卡顿,确保良好用户体验。随着安卓技术发展,更高级的异步处理工具将助力开发者构建高性能应用。
|
23天前
|
安全 Java
Java中的多线程并发控制
在Java中,多线程是实现并发执行任务的一种重要方式。然而,随着多个线程同时访问共享资源,可能会导致数据不一致和其他并发问题。因此,了解并掌握Java中的多线程并发控制机制显得尤为重要。本文将深入探讨Java的多线程并发控制,包括synchronized关键字、Lock接口、Semaphore类以及CountDownLatch类等,并通过实例代码演示其使用方法和注意事项。
12 2
|
30天前
|
算法 安全 Unix
【C++ 20 信号量 】C++ 线程同步新特性 C++ 20 std::counting_semaphore 信号量的用法 控制对共享资源的并发访问
【C++ 20 信号量 】C++ 线程同步新特性 C++ 20 std::counting_semaphore 信号量的用法 控制对共享资源的并发访问
30 0
|
1月前
|
负载均衡 Java 数据处理
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(三)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
52 2
|
1月前
|
存储 监控 Java
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(二)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
42 1
|
1月前
|
负载均衡 安全 Java
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(一)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
57 2

热门文章

最新文章