Retrofit2源码解析——网络调用流程(上)

简介:

Retrofit2源码解析系列

本文基于Retrofit2的2.4.0版本

implementation 'com.squareup.retrofit2:retrofit:2.4.0'

网络调用流程分析

我们在发起异步网络请求时是这样调用的:

MyService myService = retrofit.create(MyService.class);
Call<IpBean> call = myService.getData();
call.enqueue(new Callback<IpBean>() {
    @Override
    public void onResponse(Call<IpBean> call, Response<IpBean> response) {
        
    }

    @Override
    public void onFailure(Call<IpBean> call, Throwable t) {
        
    }
});

总结起来就是三步:通过create方法生成我们的接口对象、调用接口得到Call、调用Call发起网络请求。我们分别来看看这三步Retrofit2都干了些啥。

创建接口对象

//Retrofit.class
public <T> T create(final Class<T> service) {
    Utils.validateServiceInterface(service);
    if (validateEagerly) {
        eagerlyValidateMethods(service);
    }
    return (T) Proxy.newProxyInstance(service.getClassLoader(), new Class<?>[]{service},
            new InvocationHandler() {
                private final Platform platform = Platform.get();

                @Override
                public Object invoke(Object proxy, Method method, @Nullable Object[] args)
                        throws Throwable {
                    // If the method is a method from Object then defer to normal invocation.
                    if (method.getDeclaringClass() == Object.class) {
                        return method.invoke(this, args);
                    }
                    //这里默认返回是false,所以不会执行
                    if (platform.isDefaultMethod(method)) {
                        return platform.invokeDefaultMethod(method, service, proxy, args);
                    }
                    //创建serviceMethod
                    ServiceMethod<Object, Object> serviceMethod =
                            (ServiceMethod<Object, Object>) loadServiceMethod(method);
                    //创建OkHttpCall,用于进行网络请求
                    OkHttpCall<Object> okHttpCall = new OkHttpCall<>(serviceMethod, args);
                    //返回经过适配器适配后的okHttpCall
                    return serviceMethod.adapt(okHttpCall);
                }
            });
}

可以看到Retrofit的create方法返回的是一个动态代理对象,当我们调用通过create方法生成的接口对象myService时,就会调用代理对象的invoke方法。在invoke方法中做了几件事:

(1)根据调用的具体方法Method(比如我们调用的getData方法),生成ServiceMethod

(2)用生成的ServiceMethod和方法中的参数生成OkHttpCall用于后面调用OkHttp3请求网络

(3)将生成的OkHttpCall通过Call适配器适配以后返回,也就是将OkHttpCall转换成需要的Call类型,比如Retrofit2的Call,RxJava的Observable等,供我们调用。

调用接口得到Call

我们调用接口myService的getData方法时,会调用上面提到的动态代理对象的invoke方法,invoke方法会分别创建ServiceMethod、OkHttpCall,并将OkHttpCall适配返回我们需要的Call对象。下面我们来深入源码看看Retrofit是怎么做这些事儿的。

(1)首先我们看看是怎么创建ServiceMethod的。

//Retrofit.class
private final Map<Method, ServiceMethod<?, ?>> serviceMethodCache = new ConcurrentHashMap<>();
ServiceMethod<?, ?> loadServiceMethod(Method method) {
    ServiceMethod<?, ?> result = serviceMethodCache.get(method);
    if (result != null) return result;

    synchronized (serviceMethodCache) {
        result = serviceMethodCache.get(method);
        if (result == null) {
            result = new ServiceMethod.Builder<>(this, method).build();
            serviceMethodCache.put(method, result);
        }
    }
    return result;
}

Retrofit中利用ConcurrentHashMap对ServiceMethod进行了缓存,创建ServiceMethod时会先去缓存中找,缓存中没有的话再调用ServiceMethod的Builder创建。因为Retrofit会为我们写的接口类中的每一个方法都创建一个ServiceMethod,所以ServiceMethod的数量会很多,利用缓存可以提高效率。

public ServiceMethod build() {
    //找到该方法所需要的CallAdapter
    callAdapter = createCallAdapter();
    responseType = callAdapter.responseType();
    ...
    //找到该方法需要的返回类型转换器
    responseConverter = createResponseConverter();
    
    //解析方法中的注解
    for (Annotation annotation : methodAnnotations) {
        parseMethodAnnotation(annotation);
    }

    ...
    //这里省略解析参数中的注解步骤
    ...

    return new ServiceMethod<>(this);
}

ServiceMethod的build方法中除了解析方法和参数的注解,最重要的就是确定该方法(每一个方法对应一个ServiceMethod)的CallAdapter和ResponseConverter。我们在构建Retrofit时可以添加多个CallAdapter和ResponseConverter,而这些CallAdapter和ResponseConverter都存放在Retrofit的对应的列表中,所以这里肯定需要去Retrofit的列表里找,我们来看看。

//ServiceMethod.class
private CallAdapter<T, R> createCallAdapter() {
    Type returnType = method.getGenericReturnType();
    if (Utils.hasUnresolvableType(returnType)) {
        throw methodError(
                "Method return type must not include a type variable or wildcard: %s", returnType);
    }
    if (returnType == void.class) {
        throw methodError("Service methods cannot return void.");
    }
    Annotation[] annotations = method.getAnnotations();
    try {
        
        //通过retrofit的callAdapter方法来查找对应的CallAdapter
        return (CallAdapter<T, R>) retrofit.callAdapter(returnType, annotations);
    } catch (RuntimeException e) { // Wide exception range because factories are user code.
        throw methodError(e, "Unable to create call adapter for %s", returnType);
    }
}

可以看到这里确实是通过retrofit来查找CallAdapter的,那我们去Retrofit的callAdapter方法方法看看

//Retrofit.class
public CallAdapter<?, ?> callAdapter(Type returnType, Annotation[] annotations) {
    return nextCallAdapter(null, returnType, annotations);
}

public CallAdapter<?, ?> nextCallAdapter(@Nullable CallAdapter.Factory skipPast, Type returnType,
                                         Annotation[] annotations) {
    ...

    int start = callAdapterFactories.indexOf(skipPast) + 1;
    for (int i = start, count = callAdapterFactories.size(); i < count; i++) {
        CallAdapter<?, ?> adapter = callAdapterFactories.get(i).get(returnType, annotations, this);
        if (adapter != null) {
            return adapter;
        }
    }

    ...
}

callAdapter方法中会遍历callAdapterFactories列表中的CallAdapterFactory,并调用其get方法,尝试获取CallAdapter,如果CallAdapter不为null,就说明是要找的CallAdapter。这里我们来简单看下默认的CallAdapterFactory的get方法。

从本文的开头的分析我们知道,默认的CallAdapterFactory是Platform的内部类Android返回的ExecutorCallAdapterFactory

final class ExecutorCallAdapterFactory extends CallAdapter.Factory {
    ...
    @Override
    public CallAdapter<?, ?> get(Type returnType, Annotation[] annotations, Retrofit retrofit) {
        
        if (getRawType(returnType) != Call.class) {
            return null;
        }
        ...
    }
    
    ...
}

可以看到,ExecutorCallAdapterFactory的get方法首先会判断当前的返回类型是不是Call以及Call的子类,不是的话就返回null。所以这就是Retrofit从适配器列表中找到对应适配器的方法依据。比如我们再来看看RxJava的适配器:

//RxJavaCallAdapterFactory.class
@Override
public CallAdapter<?, ?> get(Type returnType, Annotation[] annotations, Retrofit retrofit) {
    
    ...
    if (rawType != Observable.class && !isSingle && !isCompletable) {
      return null;
    }

    ...

    return new RxJavaCallAdapter(responseType, scheduler, isAsync, isResult, isBody, isSingle,
        false);
}

所以当我们接口需要的是Observable时,我们就需要给Retrofit设置RxJava的适配器,这样Retrofit在创建ServiceMethod时就能找到对应的RxJava适配器了。

(2)创建OkHttpCall

创建OkHttpCall比较简单,直接调用构造方法就行

OkHttpCall(ServiceMethod<T, ?> serviceMethod, @Nullable Object[] args) {
    this.serviceMethod = serviceMethod;
    this.args = args;
}

(3)返回接口需要的Call对象

从上面的分析中我们知道,是通过serviceMethod的adapt方法来返回目标Call对象的,那我们来看看serviceMethod的adapt方法

T adapt(Call<R> call) {
    return callAdapter.adapt(call);
}

可以看到调用的serviceMethod中的callAdapter的adapt方法,也就是在上面的创建ServiceMethod的过程中确定的CallAdapter的adapt方法。这里我们看看默认的CallAdapter的adapt方法,也就是ExecutorCallAdapterFactory的adapt方法

final class ExecutorCallAdapterFactory extends CallAdapter.Factory {

    ...
    @Override
    public CallAdapter<?, ?> get(Type returnType, Annotation[] annotations, Retrofit retrofit) {
        if (getRawType(returnType) != Call.class) {
            return null;
        }
        final Type responseType = Utils.getCallResponseType(returnType);
        return new CallAdapter<Object, Call<?>>() {
            @Override
            public Type responseType() {
                return responseType;
            }

            @Override
            public Call<Object> adapt(Call<Object> call) {
                return new ExecutorCallbackCall<>(callbackExecutor, call);
            }
        };
    }
    
    static final class ExecutorCallbackCall<T> implements Call<T> {
        final Executor callbackExecutor;
        final Call<T> delegate;

        ExecutorCallbackCall(Executor callbackExecutor, Call<T> delegate) {
            this.callbackExecutor = callbackExecutor;
            this.delegate = delegate;
        }

        @Override
        public void enqueue(final Callback<T> callback) {
            checkNotNull(callback, "callback == null");

            delegate.enqueue(new Callback<T>() {
                @Override
                public void onResponse(Call<T> call, final Response<T> response) {
                    callbackExecutor.execute(new Runnable() {
                        @Override
                        public void run() {
                            if (delegate.isCanceled()) {
                                // Emulate OkHttp's behavior of throwing/delivering an IOException on cancellation.
                                callback.onFailure(ExecutorCallbackCall.this, new IOException("Canceled"));
                            } else {
                                callback.onResponse(ExecutorCallbackCall.this, response);
                            }
                        }
                    });
                }

                @Override
                public void onFailure(Call<T> call, final Throwable t) {
                    callbackExecutor.execute(new Runnable() {
                        @Override
                        public void run() {
                            callback.onFailure(ExecutorCallbackCall.this, t);
                        }
                    });
                }
            });
        }

        @Override
        public Response<T> execute() throws IOException {
            return delegate.execute();
        }

        ...
    }
}

可以看到,ExecutorCallAdapterFactory的adapt方法返回的是ExecutorCallAdapterFactory的内部类ExecutorCallbackCall,ExecutorCallbackCall内部有2部分组成,一个是回调执行器callbackExecutor,这个是用于将请求结果回调到主线程的;另一是Call对象,这里对应的就是OkHttpCall,因为我们调用adapt方法传入的就是OkHttpCall。

所以到这里其实网络调用的前半部分流程就清楚了:

我们在调用我们的接口方法myService的getData方法时,实际上调用的是Retrofit为我们生成的代理类的invoke方法,invoke方法会创建ServiceMethod和OkHttpCall,ServiceMethod中保存着对应CallAdapter和ResponseConverter,然后会调用ServiceMethod中的adapt方法利用CallAdapter将OkHttpCall转换成我们需要的Call类型并返回给我们调用。当我们调用Call进行网络请求时实际上调用的就是OkHttpCall对应的方法。

下篇文章我们再来分析下网络调用的下半部分流程,也就是Retrofit是怎么将OkHttp3请求返回的Response转换成我们实际需要的类型的?


欢迎关注我的微信公众号,和我一起每天进步一点点!
AntDream

目录
相关文章
|
3天前
|
SQL 安全 网络安全
构筑网络长城:网络安全漏洞解析与防御策略
【4月更文挑战第30天】 在数字化时代,网络安全已成为维护信息完整性、确保数据流通安全和保障用户隐私的关键。本文将深入探讨网络安全的核心问题——安全漏洞,并分享关于加密技术的最新进展以及提升个人和企业安全意识的有效方法。通过对常见网络威胁的剖析,我们旨在提供一套综合性的网络防御策略,以助力读者构建更为坚固的信息安全防线。
|
3天前
|
安全 算法 网络安全
构筑网络长城:网络安全漏洞解析与防御策略深入理解操作系统:进程管理与调度策略
【4月更文挑战第30天】 在数字化时代,网络安全已成为维护信息完整性、确保数据流通安全和保障用户隐私的关键。本文将深入探讨网络安全的核心问题——安全漏洞,并分享关于加密技术的最新进展以及提升个人和企业安全意识的有效方法。通过对常见网络威胁的剖析,我们旨在提供一套综合性的网络防御策略,以助力读者构建更为坚固的信息安全防线。 【4月更文挑战第30天】 在现代操作系统的核心,进程管理是维持多任务环境稳定的关键。本文将深入探讨操作系统中的进程概念、进程状态转换及进程调度策略。通过分析不同的调度算法,我们将了解操作系统如何平衡各进程的执行,确保系统资源的高效利用和响应时间的最优化。文中不仅剖析了先来先
|
3天前
|
缓存 Java 开发者
10个点介绍SpringBoot3工作流程与核心组件源码解析
Spring Boot 是Java开发中100%会使用到的框架,开发者不仅要熟练使用,对其中的核心源码也要了解,正所谓知其然知其所以然,V 哥建议小伙伴们在学习的过程中,一定要去研读一下源码,这有助于你在开发中游刃有余。欢迎一起交流学习心得,一起成长。
|
4天前
|
安全 网络协议 Java
Netty核心NioEventLoop源码解析(下)
Netty核心NioEventLoop源码解析(下)
18 0
|
4天前
|
算法 Java 索引
Netty核心NioEventLoop源码解析(上)
Netty核心NioEventLoop源码解析(上)
15 0
|
4天前
|
消息中间件 缓存 前端开发
Netty消息编码及发送源码解析
Netty消息编码及发送源码解析
7 0
|
7天前
|
移动开发 网络协议 Java
Netty解码器源码解析
Netty解码器源码解析
11 0
|
7天前
|
SQL XML Java
Mybatis源码解析
Mybatis源码解析
17 0
|
8天前
|
SQL 缓存 Java
|
8天前
|
XML 人工智能 Java
Spring Bean名称生成规则(含源码解析、自定义Spring Bean名称方式)
Spring Bean名称生成规则(含源码解析、自定义Spring Bean名称方式)

推荐镜像

更多