《云计算架构技术与实践》读书笔记(一):OpenStack概述

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a724888/article/details/75370853 这位大侠,这是我的公众号:程序员江湖。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a724888/article/details/75370853


3.1OpenStack概述

OpenStack是目前最为流行的开源云操作系统框架。自2010年6月首次发布以来,经过数以千计的开发者和数以万计的使用者的共同努力,OpenStack不断成长,日渐成熟。目前,OpenStack的功能强大而丰富,已经在私有云、公有云、NFV等多个领域得到了日益广泛的生产应用。与此同时,OpenStack已经受到了IT业界几乎所有主流厂商的关注与支持,并催生出大量提供相关产品和服务的创业企业,在事实上成为了开源云计算领域的主流标准。时至今日,围绕OpenStack已经形成了一个繁荣而影响深远的生态系统,OpenStack已经是云计算时代一个无法回避的关键话题。可以说,不了解OpenStack,就无法理解当今云计算技术的发展,也无法把握云计算产业的脉搏。因此,本章将对OpenStack的相关要点进行概括介绍。

 

3.1.1  OpenStack概念辨析

目前,与OpenStack相关的书籍与文章俯拾皆是,但其中的内容质量不一。对于读者而言,也很容易受到一些错误信息的误导。为此,本节将对OpenStack相关的一些核心概念进行介绍与澄清。

 

一、什么是OpenStackOpenStack,是目前最为流行的开源云操作系统框架。想要深入理解OpenStack是什么,则需要围绕开源、云、操作系统、框架这几个关键词展开说明。

1. 云

针对什么是云,业界已有充分的论述,此处不再深入展开。读者只需明确,OpenStack是用来构建云计算系统的核心软件组件即可。

 

2. 云操作系统,是面向云计算的操作系统

云操作系统这个概念,对于许多读者来说,可能还比较陌生。在此,我们将通过与操作系统的类比,来帮助读者理解何谓云操作系统。操作系统,是计算机系统领域里一个至关重要的概念。有了操作系统,我们才能将计算机系统中的各类软硬件整合起来,形成一个能够完成各类处理任务的完整系统,为用户提供服务。这个描述较为抽象,但结合到日常生活与工作中的实例,就清楚易懂多了。无论是服务器和个人电脑上的Linux、Windows,还是手机上的Android、iOS,都是操作系统的常见实例。无论是服务器、个人电脑还是手机上的操作系统,本质上,其核心功能都可以概括为五个方面,即资源接入与抽象、资源分配与调度、应用生命周期管理、系统管理维护和人机交互支持。换言之,只有具备了以上这五个方面的主要功能,一个操作系统才能够实现各类软硬件的整合,让系统具备为用户提供服务的能力。具体而言:(1)资源接入与抽象,是指将各类硬件设备,如CPU、内存、本地硬盘、网卡等,接入到系统中,并将其抽象为操作系统可以识别的逻辑资源,以此作为操作系统对各类硬件资源实施管理的基础;(2)资源分配与调度,是指利用操作系统的资源管理能力,将前述的不同硬件资源,按照需求的类型和数量,分配给不同的系统软件或应用软件,供其使用;(3)应用生命周期管理,是指协助用户实现各类应用软件在操作系统上的安装、升级、启动、停止、卸载等管理操作;(4)系统管理维护,是指协助系统管理员实现对系统自身的各类配置、监控、升级等管理操作;(5)人机交互支持,指提供必要的人机界面,支持系统管理员和用户对系统实施各类操作。与之对应,一个完整的云操作系统,同样应该能够具备上述五个方面的主要功能。其核心区别只是在于,云操作系统需要管理的,是一个由大量软硬件组成的分布式的云计算系统,而一个普通操作系统需要管理的,则是一台服务器、一台个人电脑,或者一部手机。针对云操作系统,上述五项主要功能的内容应该是:(1)资源接入与抽象,是指将各类服务器、存储、网络设备等硬件资源,通过虚拟化的或者可软件定义的方式,接入到云计算系统中,并将其抽象为云操作系统可以识别的计算、存储、网络等资源池,以此作为云操作系统对各类硬件资源实施管理的基础;(2)资源分配与调度,是指利用云操作系统的资源管理能力,将前述的不同资源,按照不同的云租户对于资源类型与数量的不同需求,将资源分配给各个租户,以及不同租户的不同应用;(3)应用生命周期管理,是指协助租户实现各类云应用在云操作系统上的安装、启动、停止、卸载等管理操作;(4)系统管理维护,是指协助系统管理员实现对于云计算系统的各类管理与运维操作;(5)人机交互支持,指提供必要的人机界面,支持系统管理员和普通租户对系统实施各类操作。由上述介绍可以看出,虽然云操作系统比我们日常接触的操作系统复杂很多,但其最为关键的五项主要功能,其实是可以一一对应的。通过这种对应,我们可以更为直观地理解云操作系统这个概念。而OpenStack,则是实现云操作系统的关键组件,或者说,是构建一个完整的云操作系统的框架。

 

3. 云操作系统框架,不等于云操作系统

要构建一个完整的云操作系统,需要对大量软件组件进行有机整合,让它们协同工作,共同提供系统管理员和租户所需的功能与服务。而OpenStack本身,尚且不能独立具备一个完整云操作系统所需的全部能力。举例而言:在上面提到的云操作系统的五项主要功能中,OpenStack不能独立实现资源接入与抽象,而需要和底层的虚拟化软件、软件定义存储、软件定义网络等软件相配合;OpenStack不能独立提供完善的应用生命周期管理能力,而需要在上层集成各类管理软件平台;OpenStack自身不具备完整的系统管理维护能力,在投入生产实用时,还需要集成各类管理软件与维护工具;OpenStack自身提供的人机界面,其功能也还不够丰富强大,等等。由此不难看出,想在OpenStack基础上构建一个完整的云操作系统,需要将OpenStack与其他一些软件组件进行集成,以实现OpenStack自身并不提供的能力。因此,OpenStack自身的准确定位,是一个云操作系统框架。基于这个框架,可以集成不同的各类组件,实现满足不同场景需要的云操作系统,并在此基础上,最终构建完整的云计算系统。

 

4. 开源

开源,是OpenStack的一个重要属性。应该说,不理解开源,就不能真正理解OpenStack的发展历程与未来趋势。与简单地在网络上公开源代码不同,OpenStack社区遵循的,是一种更为深入、更为彻底的开源理念。在OpenStack社区中,对于每一个组件,每一个特性,乃至每一行代码,其需求提出、场景分析、方案设计、代码提交、测试执行、代码合入的整个流程,都总体遵循开放原则,对公众可见,并且在最大程度上保证了社区贡献者的监督与参与。正是这种监督与参与的机制,保证了OpenStack社区总体上处于一种开放与均衡的状态,避免了少数人或者少数公司、组织的绝对控制,由此保障了社区生态的健康与繁荣。同时,OpenStack遵循了对商业最为友好的Apache 2.0许可,也保障了企业参与社区的商业利益,从而推动了OpenStack的产品落地与商业成功。通过以上介绍,可以看出,OpenStack是一个以开源方式开发与发布的,用于构建不同场景下的云操作系统的框架性软件。深入理解这个本质,对于深入学习和掌握OpenStack,有着非常关键的意义。

 

二、OpenStack与云计算系统的关系基于前面的介绍,不难看出,OpenStack与云计算系统之间,既紧密联系,又相互区别。OpenStack是构建云操作系统的框架。使用云操作系统,集成并管理各类硬件设备,并承载各类上层应用与服务,才能最终形成一个完整的云计算系统。由此可见,OpenStack是云计算系统的核心软件组件,是构建云计算系统的基础框架,但OpenStack和云计算系统并不能直接等同。

 

三、OpenStack与计算虚拟化的关系

计算虚拟化,是很多读者非常熟悉的概念。其对应的软件实现,就是平常所说的Hypervisor, 如开源的KVM、Xen,以及VMware的vSphere、 华为的FusionCompute、微软的Hyper-V等。OpenStack与计算虚拟化之间的关系,是目前仍然被频繁混淆的一个问题。理解这二者之间的联系与区别,也是理解OpenStack的关键之一。OpenStack是一个云操作系统的框架。为构建完整的云操作系统,特别是,为实现资源接入与抽象的功能,OpenStack需要与虚拟化软件实施集成,从而实现对服务器的计算资源的池化。应该指出的是,在资源池化的过程中,物理资源虚拟化的功能,仍然由虚拟化软件完成。举例而言,在使用KVM作为OpenStack的虚拟化软件时,仍然由KVM完成将一台物理服务器虚拟为多台虚拟机的功能,而OpenStack负责记录与维护资源池的状态。例如,系统中一共有多少台服务器,每台服务器的资源共有多少,其中已经向用户分配了多少,还有多少资源空闲。在此基础上,OpenStack负责根据用户的要求,向KVM下发各类控制命令,执行相应的虚拟机生命周期管理操作,如虚拟机的创建、删除、启动、关机等。由此可见,两相对比,OpenStack更像是系统的控制中枢,是云操作系统的“大脑”;计算虚拟化软件则更像是系统的执行机构,是云操作系统的“肢体”。二者分工合作,共同完成对云计算系统中的计算资源池的管理,但绝不能认为OpenStack等同于计算虚拟化软件。

 

3.1.2  OpenStack的设计与开发

一、OpenStack的设计思想

OpenStack之所以能够取得快速的发展,除了有云计算技术和产业快速发展的大背景之外,其自身设计思想的独到之处,也起到了有力的促进作用。OpenStack的设计思想,在总体上可以被概括为“开放、灵活、可扩展”。本节将对此展开扼要分析。1. 开放OpenStack的开放,根源于其开源模式本身。前已述及,OpenStack的开源,不仅体现在简单的源代码开放,更体现在其设计、开发、测试、发布的全流程中。这种开源模式,总体上可以保证OpenStack不被个别人或个别企业所控制,在技术上不会走向封闭架构、封闭体系,从而始终呈现出良好的开放性。无论是北向的API标准开放,还是南向的各类软件、硬件自由接入,都是OpenStack开放性的充分体现。与此同时,OpenStack也秉持了开源社区中“不重复发明轮子”的一贯理念,在设计中持续引入并充分重用各相关技术领域中的优秀开源软件,从而提升了设计与开发效率,并为软件质量提供了基本保证。

 

2. 灵活

OpenStack的灵活,首先体现在其大量使用插件化、可配置的方式进行设计。最为突出的体现,就在于OpenStack采用插件化的方式实现不同类型计算、存储、网络资源的接入,由此实现OpenStack对于不同类型资源的灵活接入与管理,用一套架构实现了对于不同厂商、不同类型设备的资源池化,例如,在计算领域,可以以插件化的形式接入KVM、Xen、vCenter、FusionCompute等不同的Hypervisor;在存储领域,可以以插件化的形式实现对不同厂商的存储设备,以及Ceph、FusionStorage、vSAN等不同的软件定义存储的管理;在网络领域,可以实现对不同的网络硬件设备,OVS、Liunx-bridge、HAProxy等开源网络组件,以及多种SDN控制器的接入。并且,这些接入都是通过可配置的方式加以选择。当在不同的资源之间进行选择时,OpenStack自身并不需要重新打包发布,只需通过配置项选择不同的接入插件即可,非常方便。在此基础上,OpenStack的灵活还体现在不依赖于任何特定的商用软硬件。换言之,任何商用软硬件产品在OpenStack中一定是可选、可替换的,从而严格保证用户可以使用完全开源、开放的方案来构建基于OpenStack的云计算系统,而完全不必担心被锁定在某些特定厂商的产品之上。

 

3. 可扩展

OpenStack的架构高度可扩展。具体而言,其扩展性体现在功能和系统规模两个方面。从功能视角看,OpenStack由多个相互解耦的项目组成。不同的项目分别完成云计算系统中的不同功能,如身份认证与授权服务、计算服务、块存储服务、网络服务、镜像服务、对象存储服务等。对于一个特定场景下的云计算系统,系统设计人员可以根据实际需要决定使用OpenStack中的若干个项目,也可以在系统上线后,根据需求继续引入新的OpenStack项目。OpenStack的一些项目自身也具有功能可扩展性。系统设计人员可以在这些项目中引入新的功能模块,在不影响项目既有功能使用的前提下,对其功能进行扩展。从系统规模视角看,OpenStack总体上遵循了无中心、无状态的架构设计思想。其主要项目,均可实现规模水平扩展,以应对不同规模的云计算系统建设需求。在系统建成后,可根据应用负载规模的实际增长,通过增加系统管理节点和资源节点的方式,逐渐扩展系统规模。这种架构可以有效避免高额的初始建设投资,也降低了系统初始规划的难度,为云计算系统的建设者和运营者提供了充分的扩展空间。

 

二、OpenStack的开发模式

前已述及,OpenStack采用了完全开放的开发模式,由数以千计的社区贡献者通过互联网协作的方式,共同完成各个项目的设计、开发、测试和发布。具体而言,OpenStack社区以每6个月为一个版本开发与发布周期,分别于每年4月和10月发布新的OpenStack版本。每个新版本发布之后约三周,社区会举行一次OpenStack设计峰会,以便开发者集中讨论新版本应优先引入的特性,或应集中解决的问题。其后,社区将进入为期约5个月的开发和测试阶段,直至新的版本发布。截至本书撰写之时,最新的OpenStack发行版是2016年4月初发布的Mitaka版本,也是OpenStack的第13个发行版。OpenStack各个项目统一遵循Apache 2.0开源许可证,对于商业应用非常友好。OpenStack各项目以Python为首选开发语言,各个项目的核心代码均使用Python语言实现。

 

三、OpenStack社区发展现状自2010年成立以来,OpenStack社区始终保持了高速发展的态势,目前已经成为了仅次于Linux的世界第二大开源软件社区。而这一切仅仅用了不到六年的时间,不得不让人惊叹开放的云计算技术所具有的强大魅力。在过去的五年多时间里,OpenStack社区的各项主要贡献指标,都呈现出快速上升的总体趋势。这种趋势,从OpenStack峰会参会人数的爆炸式增长就可以看出。2010年OpenStack首届峰会举办时,仅有75人参与。而2016年4月举办峰会时,参会人数高达7500人以上。短短六年不到的时间,人数激增100倍,由此不难看出OpenStack社区巨大的影响力与凝聚力。


微信公众号【黄小斜】大厂程序员,互联网行业新知,终身学习践行者。关注后回复「Java」、「Python」、「C++」、「大数据」、「机器学习」、「算法」、「AI」、「Android」、「前端」、「iOS」、「考研」、「BAT」、「校招」、「笔试」、「面试」、「面经」、「计算机基础」、「LeetCode」 等关键字可以获取对应的免费学习资料。 


                     wAAACH5BAEKAAAALAAAAAABAAEAAAICRAEAOw==

相关文章
|
2天前
|
存储 监控 API
构建高效微服务架构:后端开发的现代实践
【5月更文挑战第9天】 在本文中,我们将深入探讨如何在后端开发中构建一个高效的微服务架构。通过分析不同的设计模式和最佳实践,我们将展示如何提升系统的可扩展性、弹性和维护性。我们还将讨论微服务架构在处理复杂业务逻辑和高并发场景下的优势。最后,我们将分享一些实用的工具和技术,以帮助开发者实现这一目标。
|
11天前
|
人工智能 安全 网络安全
云计算环境下的网络安全策略与实践
【4月更文挑战第30天】本文聚焦于当前快速发展的云计算环境中的网络安全问题。首先,分析了云服务模式对传统网络架构的冲击和安全挑战;然后,探讨了在多租户、资源共享的前提下,如何保障数据隔离、访问控制及传输安全等关键安全要素;进一步地,提出了一系列创新的安全机制,包括基于行为分析的入侵检测系统、加密技术的最新应用,以及利用人工智能进行安全事件预测和管理的策略。最后,结合案例分析,评估了这些策略在现实业务中的有效性,并展望了未来云计算与网络安全融合发展的趋势。
|
1天前
|
监控 安全 网络安全
云端防御战线:云计算环境下的网络安全策略与实践
【5月更文挑战第10天】 在数字化转型的浪潮中,云计算作为支撑企业运营的骨干技术之一,其安全性问题备受关注。随着云服务模式的多样化和复杂化,传统的网络安全防护机制已难以完全适用于云环境。本文深入探讨了云计算环境中特有的安全威胁,分析了云计算服务模型(IaaS、PaaS、SaaS)的安全挑战,并提出了相应的安全策略与最佳实践。通过采用多层次防御架构、强化身份认证与访问控制、实施数据加密与隐私保护措施以及建立持续监控与响应机制,旨在为组织在享受云计算带来的便捷性的同时,确保其数据和服务的安全性。
|
1天前
|
Cloud Native 安全 云计算
什么是云原生架构,我们该如何做好云原生安全,引领云计算时代的应用程序革新
云原生架构,基于云计算设计理念,强调应用在云环境中设计、构建和运行,利用容器化、微服务、自动化管理和持续交付实现灵活、可扩展和高效。其优势包括高可扩展性、可伸缩性、高效性、灵活性、可靠性和成本效益。应用场景广泛,如电商、金融和物联网。构建关键要素包括容器化、微服务、自动化管理和持续交付。保障安全,需重视容器安全,采用如德迅蜂巢·云原生安全平台等解决方案。云原生正引领应用程序革新,成为现代应用构建首选。
|
2天前
|
缓存 负载均衡 API
微服务架构下的API网关性能优化实践
【5月更文挑战第10天】在微服务架构中,API网关作为前端和后端服务之间的关键枢纽,其性能直接影响到整个系统的响应速度和稳定性。本文将探讨在高并发场景下,如何通过缓存策略、负载均衡、异步处理等技术手段对API网关进行性能优化,以确保用户体验和服务的可靠性。
|
3天前
|
监控 API 持续交付
构建高效可靠的微服务架构:策略与实践
【5月更文挑战第8天】在当今快速演进的软件开发领域,微服务架构已经成为实现敏捷开发、持续交付和系统弹性的关键模式。本文将探讨构建一个高效且可靠的微服务系统所必须的策略和最佳实践。我们将从服务的划分与设计原则出发,讨论如何通过容器化、服务发现、API网关以及断路器模式来优化系统的可伸缩性和鲁棒性。此外,我们还将涉及监控、日志管理以及CI/CD流程在确保微服务架构稳定运行中的作用。
|
3天前
|
存储 消息中间件 Cloud Native
AutoMQ:充分挖掘云计算技术红利,免除下云烦恼
AutoMQ 通过深度用云,以云原生的能力重构了 Apache Kafka,创造了 10 倍的成本优势。相较于Kafka,AutoMQ的共享存储架构使得在分区迁移、节点动态扩缩容、流量自动重平衡等运维方面的耗时指标得到了数百倍的优化。今天,这篇文章,主要是立足于阿里云,盘点 AutoMQ 深度使用的云原生技术,以及分别用这些技术解决什么样的实际问题。
|
4天前
|
敏捷开发 持续交付 API
构建高效微服务架构:后端开发的现代实践
【5月更文挑战第8天】 在数字化转型的浪潮中,微服务架构已成为企业追求敏捷开发、持续交付和系统弹性的关键解决方案。本文将深入探讨微服务的核心概念,包括其设计原则、优缺点以及如何在后端开发中实现高效的微服务架构。我们将通过实际案例分析,展示微服务如何帮助企业快速适应市场变化,同时保持系统的可维护性和扩展性。
|
4天前
|
监控 云计算 开发者
探索云计算中的无服务器架构:从概念到实践
无服务器架构作为云计算领域的新兴技术,正在以其高效、灵活的特性吸引着越来越多的开发者和企业。本文将深入探讨无服务器架构的概念及其在云计算中的应用,通过实际案例展示如何利用无服务器架构构建可靠、可扩展的应用系统。
|
5天前
|
监控 负载均衡 数据安全/隐私保护
探索微服务架构下的服务网格(Service Mesh)实践
【5月更文挑战第6天】 在现代软件工程的复杂多变的开发环境中,微服务架构已成为构建、部署和扩展应用的一种流行方式。随着微服务架构的普及,服务网格(Service Mesh)作为一种新兴技术范式,旨在提供一种透明且高效的方式来管理微服务间的通讯。本文将深入探讨服务网格的核心概念、它在微服务架构中的作用以及如何在实际项目中落地实施服务网格。通过剖析服务网格的关键组件及其与现有系统的协同工作方式,我们揭示了服务网格提高系统可观察性、安全性和可操作性的内在机制。此外,文章还将分享一些实践中的挑战和应对策略,为开发者和企业决策者提供实用的参考。