机器如何“猜你喜欢”?深度学习模型在1688的应用实践

简介:

一、背景

3ab3b865326df36fdc3f68f2a9e756a2a9f3b9d6

猜你喜欢是推荐领域极其经典的一个场景,在1688首页无线端猜你喜欢栏目日曝光约23w,其中约72%的用户会产生点击行为,人均点击约8次。在我们的场景中,这部分是一个相对较大的流量来源。我们算法要做的就是通过用户的真实行为数据,预测用户最可能感兴趣的商品进行展示,以提高点击率,从而提高购买量。

不同于搜索,这种用户带有明确目的的行为,猜你喜欢是在用户没有明确目的时让用户“逛起来”,挖掘用户的潜在喜好商品,增强用户体验。

77a799ac82ecf54a547c436decbb8f04e500c831

整个猜你喜欢的框架如图。用户产生的实时数据放在ABFS上,通过TPP传入BE,在BE中通过swing、c2i等算法召回1000个商品(粗排),再把这1000个商品通过TPP传入RTP中在线打分,最后把分数最高的600个商品按得分展现给用户(精排)。离线在Porsche平台上调试模型,调到最优结果再发布到RTP看线上效果。

ABFS (Ali Basic Feature Server),统一特征服务平台:该模块主要负责用户实时数据的处理以及特征的统计工作,如基础行为特征(点击、收藏、加购等),统计特征(点击次数、点击率等),并传递到TPP供BE系统调用;

TPP(The Personalization Platform),阿里个性化平台:集成RTP、IGraph、BE等常用服务,方便数据的流动调用,降低开发成本,帮助业务和算法快速上线迭代;

BE(Basic Engine),向量化召回。是DII上的一个为推荐场景定制的召回引擎服务,负责从多种类型的索引表中召回商品,并关联具体的商品信息进行过滤和粗排。线上召回效率极高,可以在几毫秒内对全库商品召回结果;

iGraph平台:超大规模分布式在线图存储和检索。在我们的流程中主要用来储存一些用户特征,用户偏好类目和热门商品召回等。因为这些信息不需要频繁更新,存到iGraph上方便存取和调用;

RTP(Real Time Prediction),实时打分服务系统:利用Swift增量传输模型,使用实时BUILD索引技术来实现特征和模型的秒级更新,RTP系统在收到TPP推荐系统的前端请求后,进行FG的实时特征产出,并对请求的item list中每个item计算出一个分值,是CTR、CVR各种机器学习模型预估的专用服务器;

Porsche在线学习平台: Porsche是基于Blink的分布式流式计算框架,提供了日志处理、特征计算和实时建模的插件接口。实时更新的模型和特征通过swift秒级别同步RTP等服务端。从用户发生交互行为、行为样本被实时系统接收和解析、加入在线训练、将更新的模型参数发送给服务端到最终新的推荐结果被用户感知,这个过程高度实时化、在线化。

二、模型简介

1. 搭积木

e1a8adc30a977c5e0ea388b2246d752a697e9fea

深度学习模型很大程度上来自不同基础模块的组合,通过不同方式组合不同模块,构建不同的模型。最经典的就是Google的Wide&Deep模型,结合深度模块DNN和线性模块LR,让模型同时拥有记忆性和泛化性。

在WDL之后,学术界和工业界在此结构上有很多其他的尝试。下面分析几个我试过的网络。

2. Wide&Deep

34801d550a535ad9a219ce7b67a0b5a40f2608ca

这是Google提出的非常经典的网络结构,论文见《Wide & Deep Learning for Recommender Systems》。离散特征经过Embedding和连续特征一起输入到DNN侧,Wide侧是一些人工交叉(如用笛卡尔积)特征,主要交叉的是id类特征,来学习特征间的共现。主要公式如下:

1f0834d69797a9e472a3cd3acd4b4a77cd57258c

Wide侧LR模型的记忆性很强,比如用户买了一本科幻书,下一次再出现这样的组合,模型就会记住判断正确。但若此时来了一本科学书,LR模型不一定能分对,所以需要Deep侧DNN模型的补充。

Deep侧DNN模型通过Embedding层挖掘特征间的语义相关性,比如上个例子中,通过Embedding模型可以学到“科学”和“科幻”是相似的,从而也能推出用户也可能喜欢科学书。这样,通过DNN和LR模型的结合,Wide&Deep模型有很好的记忆性和泛化性。这也是我们目前猜你喜欢线上在用的模型。

3. PNN

PNN的思想来自于对MLP学习的交叉特征的补充,论文见《Product-based Neural Networks for User Response Prediction》。作者认为MLP不能很好地学出特征间的交叉关系,所以提出了一种product layer的思想,也就是基于乘法的运算强行显式地进行二阶特征交叉,结构如下图:

fdd6646cbd7a6574d1b18d942c91fcc09b1f85d7

从结构图可以看出,product layer可以分成z和p两部分。线性部分z直接从Embedding结果得到,非线性部分也就是乘积部分,这里的乘积有两种选择,内积或者外积。

c39797919aef61fb8b47e9fd925af66cf5c4b486

但这种结构的受限之处在于,它要求输入特征Embedding到相等的维度,因为维度相同才能做乘积运算。

4.DeepFM

DeepFM由华为诺亚方舟实验室和哈工大共同提出,论文见《DeepFM:A Factorization-Machine based Neural Network for CTR Prediction》。它的结构很像Wide&Deep与PNN的结合,它是把Wide&Deep中Wide侧的LR换成了乘积结构FM,通过FM和DNN分别提取低阶和高阶特征。而且这两部分共享Embedding输入。结构如下图:

3b52ed8e80054014d39e33e11197f6cb1df2189d

FM部分是一个因子分解机。关于因子分解机可以参阅Steffen Rendle 在ICDM, 2010发表的文章《Factorization Machines》。因为引入了隐变量的原因,对于几乎不出现或者很少出现的隐变量,FM也可以很好的学习。FM的公式如下:

c334c4bfedbd36e89dff6ee9acb3424fcc5bfc7e

而且在FM的文章中,作者还给出了求解交叉项的化简公式:

3bd4b269bfd028ca30a97e9fd3089319dbfd2ace

跟PNN一样,因为FM强制特征间二阶交叉,所以需要把特征Embedding到相等长度的维度,且DeepFM结构两边的输入是共享的,不需要像Wide&Deep一样人工给LR模型构造交叉特征,节省了人力。但在集团实际应用中,不同特征的维度相差很大,比如性别只有3维(男、女、未知),而id类特征多达上亿维,不可能都Embedding到相同的长度。这里可以参考淘宝搜索团队的做法,通过Group product的方式分组Embedding:双11实战之大规模深度学习模型。他们在双十一中也取得了不错的效果。

5.Wide&Resnet

这个结构是我自己在工作中的尝试。想法来源于对Wide&Deep模型的改进,把原来Wide&Deep结构中DNN部分改成了一个类似Resnet那样skip connection的结构,也就是信号分成两路,一路还是经过两个relu层,另一路直接接到第二层relu,形成类似残差网络的结构。这样做的好处是,可以把不同层级的特征进行组合,丰富特征的信息量。两个模型的对比图如下:

c363876f37e87dfb0324a5022a46dce1368252f4

此外,我还发现单纯从DNN改到Resnet的结构并没有多少作用,但是在Resnet中加入batch normalization,即BN层后,网络的表达能力得到了很大的提高。可以从离线CTR实验的准确率中得以提现。离线效果见第四部分。

e79b1142844cd4296f4fcb132ecda6d87e63eb1b

三、训练数据

训练数据来自目标日前七天内用户在1688首页猜你喜欢模块行为数据,曝光点击label为1,曝光未点击则label为0。

1688猜你喜欢使用的数据特征体系如下:

2e9db4b51c75b2d6e560aa49ae070af712120bb4

图中滑窗期指目标前1/3/5/7/15/30天的行为窗口。

1688平台与淘宝等传统的B2C平台不同,1688是一个B2B的平台,意味着我们的买家和卖家都是B类用户。B类用户与C类用户在特征上有明显的不同,比如:

●  B类用户特征会有是否是淘宝卖家;
●  相比于C类,B类用户没有年龄、性别、社会状态(是否有孩子、车子、房子)等人口统计学特征;
●  对于1688的商品也没有品牌特征,因为我们主打的是非品牌类的批发市场。

四、实验结果

Porsche平台上做离线实验,可以看到带BN层的Wide&Resnet的模型比baseline的Wide&Deep模型在训练集和测试集上的AUC基本都要高1个多百分点。经过三次增量,即每批数据从上一次训练的模型基础上进一步迭代训练,AUC能提高5%~6%。

33b53ec4ab457e8d15c18766d15173fe86cba327

从loss曲线中更能明显看出,加了BN后的模型,loss基本在0.3之下,稳定在一个较小水平;而原来Wide&Deep模型的loss波动范围较大。所以BN对模型的稳定性起到了很明显的效果。

6329ae490d48e0cf5defaefdd234a9e9d9b4a17f

五、调参经验

分享一些其他的调参经验:

1fb9750d10c32f9b0d650f79387a69bb9f9e8ceb

六、总结

本文在Wide&Deep模型上进行改进,提出Wide&Resnet结构,并通过Batch Normalization的方式大幅提升网络效果,是一次有意义的探索。

感谢霍博和CBU的算法小伙伴们一个多月的支持!以及特别感谢哈西师兄,易山师兄的指导!

关于我们

1688CBU事业部是阿里集团新零售事业群的核心部门,聚焦B类电商,建设B2B数据和业务闭环。CBU技术部新零售算法团队担负着技术创造新的业务价值的使命,我们已经将一系列深度模型应用于推荐、搜索、NLP、品类规划等领域,沉淀出一套有竞争力的技术体系,并且坚持在算法深度的道路上持续探索。
欢迎加入CBU技术部新零售算法团队!团队长年招聘搜索、推荐、NLP相关算法同学,有意向欢迎邮件至chengfu.huocf@alibaba-inc.com


原文发布时间为:2018-09-6

本文作者:顾海倩

本文来自云栖社区合作伙伴“阿里技术”,了解相关信息可以关注“阿里技术”。

相关文章
|
21小时前
|
机器学习/深度学习 算法 网络架构
深度学习在图像识别中的应用与挑战
【5月更文挑战第8天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的重要力量。本文深入探讨了深度学习技术在图像识别任务中的应用,包括卷积神经网络(CNN)的基础架构、训练策略以及优化方法。同时,文章还分析了当前面临的主要挑战,如数据集偏差、模型泛化能力和计算资源消耗等,并提出了潜在的解决方案。
|
21小时前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第8天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉进步的核心技术之一。本文聚焦于深度学习在图像识别领域的应用及其所面临的挑战。首先,简述了深度学习的基本概念和关键技术,随后深入探讨了卷积神经网络(CNN)在图像分类、目标检测和语义分割中的具体应用案例。接着,分析了当前深度学习技术在处理大规模图像数据时遇到的计算资源需求高、模型泛化能力不足、对抗性攻击等问题。最后,展望了通过模型压缩、迁移学习以及增强学习等策略来应对这些挑战的未来研究方向。
|
23小时前
|
机器学习/深度学习 算法 自动驾驶
深度学习在图像识别中的创新应用
【5月更文挑战第8天】 随着科技的不断发展,深度学习技术在图像识别领域的应用越来越广泛。本文将介绍深度学习在图像识别中的创新应用,包括卷积神经网络(CNN)的原理、优化算法以及实际应用场景。通过对这些技术的深入探讨,我们可以更好地理解深度学习在图像识别领域的重要性和潜力。
5 0
|
23小时前
|
机器学习/深度学习 自动驾驶 安全
深度学习在图像识别中的应用及挑战
【5月更文挑战第8天】 本文旨在探讨深度学习技术在图像识别领域的应用及其面临的主要挑战。随着卷积神经网络(CNN)等深度结构的发展,图像识别准确率已显著提高,但伴随而来的是对计算资源的巨大需求、模型泛化能力的考验以及对抗性攻击的脆弱性等问题。我们将回顾深度学习在图像识别中的基础原理,展示其在多个领域内的实际应用案例,并分析当前技术发展所面临的关键挑战。
3 0
|
23小时前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别在自动驾驶中的应用
【5月更文挑战第8天】 随着人工智能技术的飞速发展,深度学习已经成为计算机视觉领域的核心技术之一。特别是在图像识别任务中,深度学习模型已经显示出超越传统算法的性能。本文旨在探讨基于深度神经网络的图像识别技术在自动驾驶汽车中的应用及其对提高行车安全性的重要性。我们将详细介绍卷积神经网络(CNN)的基础结构,以及如何通过增加网络深度和宽度、使用正则化方法和数据增强技术来提升模型性能。此外,我们还将讨论这些技术在实际自动驾驶系统中的实现方式和所面临的挑战。
|
1天前
|
机器学习/深度学习 编解码 监控
探索MATLAB在计算机视觉与深度学习领域的实战应用
探索MATLAB在计算机视觉与深度学习领域的实战应用
19 7
|
1天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第7天】 随着人工智能技术的飞速发展,深度学习在图像识别领域的应用已经取得了显著的成果。本文将探讨深度学习在图像识别中的关键技术和发展趋势,以及面临的挑战和未来的发展方向。
|
2天前
|
机器学习/深度学习 边缘计算 人工智能
深度学习在图像识别中的应用与挑战
【5月更文挑战第7天】 随着计算机视觉技术的飞速发展,深度学习已成为推动图像识别领域进步的关键力量。本文旨在探讨深度学习技术在图像识别任务中的实际应用,并分析目前所面临的主要挑战。我们将回顾卷积神经网络(CNN)的基本结构,讨论数据增强、迁移学习等优化策略,并探索对抗性网络、自编码器等新兴技术如何影响图像识别的精度和效率。此外,我们还将着眼于解决过拟合、计算资源限制以及数据集偏差等问题的途径。
|
2天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
2天前
|
机器学习/深度学习 固态存储 计算机视觉
深度学习在图像识别中的应用与挑战
【5月更文挑战第6天】 随着科技的飞速发展,深度学习技术在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战。我们将介绍卷积神经网络(CNN)的基本概念,以及如何利用深度学习进行图像分类、目标检测和语义分割等任务。此外,我们还将讨论数据不平衡、过拟合和计算资源等挑战,以及如何解决这些问题。