MySQL的索引是什么?怎么优化?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

      索引类似大学图书馆建书目索引,可以提高数据检索的效率,降低数据库的IO成本。MySQL在300万条记录左右性能开始逐渐下降,虽然官方文档说500~800w记录,所以大数据量建立索引是非常有必要的。MySQL提供了Explain,用于显示SQL执行的详细信息,可以进行索引的优化。

一、导致SQL执行慢的原因:

      1.硬件问题。如网络速度慢,内存不足,I/O吞吐量小,磁盘空间满了等。

      2.没有索引或者索引失效。(一般在互联网公司,DBA会在半夜把表锁了,重新建立一遍索引,因为当你删除某个数据的时候,索引的树结构就不完整了。所以互联网公司的数据做的是假删除.一是为了做数据分析,二是为了不破坏索引 )

      3.数据过多(分库分表)

      4.服务器调优及各个参数设置(调整my.cnf)

二、分析原因时,一定要找切入点:

      1.先观察,开启慢查询日志,设置相应的阈值(比如超过3秒就是慢SQL),在生产环境跑上个一天过后,看看哪些SQL比较慢。

      2.Explain和慢SQL分析。比如SQL语句写的烂,索引没有或失效,关联查询太多(有时候是设计缺陷或者不得以的需求)等等。

      3.Show Profile是比Explain更近一步的执行细节,可以查询到执行每一个SQL都干了什么事,这些事分别花了多少秒。

      4.找DBA或者运维对MySQL进行服务器的参数调优。

三、什么是索引?

      MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。我们可以简单理解为:快速查找排好序的一种数据结构。Mysql索引主要有两种结构:B+Tree索引和Hash索引。我们平常所说的索引,如果没有特别指明,一般都是指B树结构组织的索引(B+Tree索引)。索引如图所示:

             

      最外层浅蓝色磁盘块1里有数据17、35(深蓝色)和指针P1、P2、P3(黄色)。P1指针表示小于17的磁盘块,P2是在17-35之间,P3指向大于35的磁盘块。真实数据存在于子叶节点也就是最底下的一层3、5、9、10、13......非叶子节点不存储真实的数据,只存储指引搜索方向的数据项,如17、35。

      查找过程:例如搜索28数据项,首先加载磁盘块1到内存中,发生一次I/O,用二分查找确定在P2指针。接着发现28在26和30之间,通过P2指针的地址加载磁盘块3到内存,发生第二次I/O。用同样的方式找到磁盘块8,发生第三次I/O。

      真实的情况是,上面3层的B+Tree可以表示上百万的数据,上百万的数据只发生了三次I/O而不是上百万次I/O,时间提升是巨大的。

四、Explain分析

      前文铺垫完成,进入实操部分,先来插入测试需要的数据:

CREATE TABLE `user_info` (
  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(50) NOT NULL DEFAULT '',
  `age`  INT(11)              DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `name_index` (`name`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO user_info (name, age) VALUES ('xys', 20);
INSERT INTO user_info (name, age) VALUES ('a', 21);
INSERT INTO user_info (name, age) VALUES ('b', 23);
INSERT INTO user_info (name, age) VALUES ('c', 50);
INSERT INTO user_info (name, age) VALUES ('d', 15);
INSERT INTO user_info (name, age) VALUES ('e', 20);
INSERT INTO user_info (name, age) VALUES ('f', 21);
INSERT INTO user_info (name, age) VALUES ('g', 23);
INSERT INTO user_info (name, age) VALUES ('h', 50);
INSERT INTO user_info (name, age) VALUES ('i', 15);

CREATE TABLE `order_info` (
  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `user_id`      BIGINT(20)           DEFAULT NULL,
  `product_name` VARCHAR(50) NOT NULL DEFAULT '',
  `productor`    VARCHAR(30)          DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)ENGINE = InnoDB DEFAULT CHARSET = utf8;

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p2', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, 'p1', 'DX');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, 'p5', 'WL');
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, 'p3', 'MA');
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, 'p1', 'WHH');
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, 'p8', 'TE');
AI 代码解读

初体验,执行Explain的效果:

索引使用情况在possible_keys、key和key_len三列,接下来我们先从左到右依次讲解。

1.id

--id相同,执行顺序由上而下
explain select u.*,o.* from user_info u,order_info o where u.id=o.user_id;
AI 代码解读

--id不同,值越大越先被执行
explain select * from  user_info  where id=(select user_id from order_info where  product_name ='p8');
AI 代码解读

2.select_type

可以看id的执行实例,总共有以下几种类型:

  • SIMPLE: 表示此查询不包含 UNION 查询或子查询
  • PRIMARY: 表示此查询是最外层的查询
  • SUBQUERY: 子查询中的第一个 SELECT
  • UNION: 表示此查询是 UNION 的第二或随后的查询
  • DEPENDENT UNION: UNION 中的第二个或后面的查询语句, 取决于外面的查询
  • UNION RESULT, UNION 的结果
  • DEPENDENT SUBQUERY: 子查询中的第一个 SELECT, 取决于外面的查询. 即子查询依赖于外层查询的结果.
  • DERIVED:衍生,表示导出表的SELECT(FROM子句的子查询)

3.table

table表示查询涉及的表或衍生的表:

explain select tt.* from (select u.* from user_info u,order_info o where u.id=o.user_id and u.id=1) tt
AI 代码解读

id为1的<derived2>的表示id为2的u和o表衍生出来的。

4.type

type 字段比较重要,它提供了判断查询是否高效的重要依据依据。 通过 type 字段,我们判断此次查询是 全表扫描 还是 索引扫描等。


type 常用的取值有:

  • system: 表中只有一条数据, 这个类型是特殊的 const 类型。
  • const: 针对主键或唯一索引的等值查询扫描,最多只返回一行数据。 const 查询速度非常快, 因为它仅仅读取一次即可。例如下面的这个查询,它使用了主键索引,因此 type 就是 const 类型的:explain select * from user_info where id = 2;
  • eq_ref: 此类型通常出现在多表的 join 查询,表示对于前表的每一个结果,都只能匹配到后表的一行结果。并且查询的比较操作通常是 =,查询效率较高。例如:explain select * from user_info, order_info where user_info.id = order_info.user_id;
  • ref: 此类型通常出现在多表的 join 查询,针对于非唯一或非主键索引,或者是使用了 最左前缀 规则索引的查询。例如下面这个例子中, 就使用到了 ref 类型的查询:explain select * from user_info, order_info where user_info.id = order_info.user_id AND order_info.user_id = 5
  • range: 表示使用索引范围查询,通过索引字段范围获取表中部分数据记录。这个类型通常出现在 =, <>, >, >=, <, <=, IS NULL, <=>, BETWEEN, IN() 操作中。例如下面的例子就是一个范围查询:explain select * from user_info  where id between 2 and 8;
  • index: 表示全索引扫描(full index scan),和 ALL 类型类似,只不过 ALL 类型是全表扫描,而 index 类型则仅仅扫描所有的索引, 而不扫描数据。index 类型通常出现在:所要查询的数据直接在索引树中就可以获取到, 而不需要扫描数据。当是这种情况时,Extra 字段 会显示 Using index。
  • ALL: 表示全表扫描,这个类型的查询是性能最差的查询之一。通常来说, 我们的查询不应该出现 ALL 类型的查询,因为这样的查询在数据量大的情况下,对数据库的性能是巨大的灾难。 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免。

      通常来说, 不同的 type 类型的性能关系如下:
      ALL < index < range ~ index_merge < ref < eq_ref < const < system
      ALL 类型因为是全表扫描, 因此在相同的查询条件下,它是速度最慢的。而 index 类型的查询虽然不是全表扫描,但是它扫描了所有的索引,因此比 ALL 类型的稍快.后面的几种类型都是利用了索引来查询数据,因此可以过滤部分或大部分数据,因此查询效率就比较高了。

5.possible_keys

      它表示 mysql 在查询时,可能使用到的索引。 注意,即使有些索引在 possible_keys 中出现,但是并不表示此索引会真正地被 mysql 使用到。 mysql 在查询时具体使用了哪些索引,由 key 字段决定。

6.key

      此字段是 mysql 在当前查询时所真正使用到的索引。比如请客吃饭,possible_keys是应到多少人,key是实到多少人。当我们没有建立索引时:

explain select o.* from order_info o where  o.product_name= 'p1' and  o.productor='whh';
create index idx_name_productor on order_info(productor);
drop index idx_name_productor on order_info;
AI 代码解读

建立复合索引后再查询:

7.key_len

      表示查询优化器使用了索引的字节数,这个字段可以评估组合索引是否完全被使用。

8.ref

      这个表示显示索引的哪一列被使用了,如果可能的话,是一个常量。前文的type属性里也有ref,注意区别。

9.rows

      rows 也是一个重要的字段,mysql 查询优化器根据统计信息,估算 sql 要查找到结果集需要扫描读取的数据行数,这个值非常直观的显示 sql 效率好坏, 原则上 rows 越少越好。可以对比key中的例子,一个没建立索引钱,rows是9,建立索引后,rows是4。

10.extra

explain 中的很多额外的信息会在 extra 字段显示, 常见的有以下几种内容:

  • using filesort :表示 mysql 需额外的排序操作,不能通过索引顺序达到排序效果。一般有 using filesort都建议优化去掉,因为这样的查询 cpu 资源消耗大。
  • using index:覆盖索引扫描,表示查询在索引树中就可查找所需数据,不用扫描表数据文件,往往说明性能不错。
  • using temporary:查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高,建议优化。
  • using where :表名使用了where过滤。

五、优化案例

explain select u.*,o.* from user_info u LEFT JOIN  order_info o on u.id=o.user_id;
AI 代码解读

执行结果,type有ALL,并且没有索引:

开始优化,在关联列上创建索引,明显看到type列的ALL变成ref,并且用到了索引,rows也从扫描9行变成了1行:

这里面一般有个规律是:左链接索引加在右表上面,右链接索引加在左表上面。

六、是否需要创建索引?   

      索引虽然能非常高效的提高查询速度,同时却会降低更新表的速度。实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。

              

      我是个普通的程序猿,水平有限,文章难免有错误,欢迎牺牲自己宝贵时间的读者,就本文内容直抒己见,我的目的仅仅是希望对读者有所帮助。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
2
分享
相关文章
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
111 23
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
712 9
MySQL细节优化:关闭大小写敏感功能的方法。
通过这种方法,你就可以成功关闭 MySQL 的大小写敏感功能,让你的数据库操作更加便捷。
70 19
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
137 22
MySQL底层概述—8.JOIN排序索引优化
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
154 15
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
118 12
MySQL底层概述—5.InnoDB参数优化
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
69 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
177 9
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
77 23
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等