Kaggle CTO 力荐:从 Kaggle 历史数据看机器学习竞赛趋势

简介: Kaggle 是全球最大数据建模和数据分析竞赛平台,也是检验个人水平的最佳舞台。现如今,随着社会对机器学习人才的需求提高,在 Kaggle 上刷到过前 5%、10% 也成了应聘的一个硬指标。考虑到 Kaggle 的权威性和受欢迎度,这么多年来,这个平台的数据应该能体现整个数据科学领域的发展轨迹。

多年来,数据科学领域的许多趋势已经发生了改变。Kaggle,作为全球最大、最受欢迎的数据科学社区,记录着这些变化的演进状态。本文将使用 Kaggle Meta Data 逐一分析,看看这些年来,我们的数据科学究竟发生了什么变化?

线性回归与逻辑回归

线性回归与逻辑回归是机器学习中比较基础又很常用的内容,其中前者可以进行连续值预测,后者能被用于解决分类问题。所以我们先从它们开始,根据 Kaggle 论坛的帖子数对比这两种算法的热度趋势。

598e2320157df36b25a7aa4614d7d2f5b8debce3

蓝:线性回归;橙:逻辑回归

如上图所示,橙线大多数时间都在蓝线之上,用户这些年来似乎一直都更喜欢聊 logistic 回归。而宏观来看,两种算法的变化趋势几乎吻合,峰值重合度较高,虽然起伏明显,但这 8 年来,它们总体是呈上升趋势的。

那么 logistic 回归受欢迎的原因是什么?一个迹象表明,Kaggle 上的分类问题远多于回归问题,其中一个代表是这些年来最受欢迎的泰坦尼克号生存预测竞赛。这是 Kaggle 上历史最 “悠久” 的竞赛之一,用户的讨论自然也很激烈。而最受欢迎的回归问题则是房价预测,但人们通常会在完成泰坦尼克号之后再考虑这个问题。

在 2017 年 10 月和 2018 年 3 月,Kaggle 论坛上关于 logistic 回归的讨论量大幅增加。对此,一个可能的解释是平台上出现的新竞赛——恶意评论分类。当时一些团队分享了不少和分类模型相关的高质量经验,其中就包括 logistic 回归。

XgBoost的霸主地位

049efb6dfbcb50e49b6f6ee8cd1b415331ede9ef

蓝:决策树;橙:随机森林;绿:XgBoost;红:LightGBM;紫:CatBoost

在 2014 年以前,线性模型、决策树和随机森林的讨论量虽然不多,但它们占据绝对话语权。2014 年,时为华盛顿大学博士的陈天奇开源 XgBoost 算法,受到大众追捧,之后它也迅速成了 Kaggle 竞赛中的常客。时至今日,XgBoost 在竞赛中的使用率还是很高,性能也很好,不少夺冠方案中都有它的身影。

但是,根据曲线我们可以注意到,自从 2016 年 LightGBM 被提出后,XgBoost 的讨论量出现了一定程度的下降,而 LightGBM 却一路水涨船高。可以预见,在学界开源更好的模型前,这个算法将在未来几年占据主导地位。现在 LightGBM 也已经出现在不少竞赛中,比如 Porto Seguro 的安全驾驶预测,它的优点是比 XgBoost 实现速度更快、更简单。

除了这些算法,图中 “最年轻” 的 CatBoost 也有走红的趋势。

神经网络与深度学习趋势

dbb6d105c9cdeb0435141be684e64b144be353d8

蓝:神经网络;橙:深度学习

几十年来,神经网络在学界和工业界一直不温不火,但如上图所示,随着大型数据集的出现和计算机算力的大幅提升,近几年这种趋势已经发生了变化。

从 2014 年起,我们相继迎来了 theano、tensorflow、keras,与此同时,一个名为深度学习的时代也渐渐出现在世人视野里。在 Kaggle 上,用户发表的有关深度学习的帖子数不断上升,并最终超过神经网络。此外,诸如亚马逊、谷歌等的云服务提供商也正拥抱新技术,以更加积极的姿态展示在云上训练深层神经网络的能力。

深度学习模型是 Kaggle 竞赛中的新星,目前它已经在图像分类、文本分类竞赛中崭露头角,比如 Data Science Bowl、Quora 重复问题分类等。而伴随 RNN、CNN 的不断改进,深度学习的流行趋势似乎已经势不可挡。此外,一些尝试已经证实,迁移学习和预训练模型在竞赛中能够表现出色。

这种技术让人们看到了可能性。为了让用户从实践中学到更多知识,Kaggle 可以推出更多和图像分类建模相关的比赛,但以当前的情况看,现在限制用户大规模使用深度学习的是它的算力要求。但这种问题是可以被解决的。Kaggle 已经添加 GPU 支持,未来,相信尝试深度学习的用户会越来越多。

Kaggle上流行的机器学习工具

1dee93c5e37388d68d26ad9298a940e22d24cb72

蓝:Scikit;橙:Tensorflow;绿:Keras;红:Pytorch

在 2015 年以前,如果一个数据科学家想构建机器学习模型,Scikit Learn 是他唯一可以选择的库;2015 年后,这种局面发生了改变,作为 ML 生态的一部分,谷歌开源软件库 Tensorflow,并让它迅速在全球范围内普及。

但Tensorflow 也存在缺点,就是它比较难学,因此虽然用户非常多,但在 Kaggle 这个竞赛平台上,大多数用户还是倾向于选择更灵活、更简单的 Keras。毕竟究其本质,Keras 可以被看作是 Tensorflow 封装后的一个 API。

XgBoost vs Keras

7e3375c10b20788b2301781b3a6bc56e012e38c8

蓝:XgBoost;橙:Keras

既然 Keras 是深度学习框架,我们可以把它看做深层神经网络的间接代表。

XgBoost 与深度学习孰优孰劣?这是去年 Quora 上吵翻天的一个问题。而从 Kaggle 的数据看,前者一直处于领先地位,而后者也在奋力追赶。相比复杂、层多的神经网络,XgBoost 的优点是更快,对硬件要求更低,因此也更受普通用户欢迎。

但这个结果并不代表优劣,拿陈天奇博士自己的话说,就是:

不同的机器学习模型适用于不同类型的任务。深层神经网络通过对时空位置建模,能够很好地捕获图像、语音、文本等高维数据。而基于树模型的 XGBoost 则能很好地处理表格数据,同时还拥有一些深层神经网络所没有的特性(如:模型的可解释性、输入数据的不变性、更易于调参等)。

可视化工具大比拼

d7d3650eb8b7a31135b30237877201b4c950fc10

蓝:Matplotlib;橙:Seaborn;绿:Plotly

从 2017 年起,Plotly 就像开了挂一样一路走红,现在已经成为 Kaggle 用户最常用的可视化工具。排名第二的是 Seaborn,它实际上是在 Matplotlib 的基础上进行了更高级的 API 封装,生成的图更好看,而作为补充,Matplotlib 的图更有特色。

数据科学过程步骤大比拼

d5ccc82943556a2d473bc45c662d6b250adebe70

蓝:Exploration;橙:特征工程;绿:调参;红:集成

在上图中,最受 Kaggle 用户关注的是模型的集成。参加竞赛时,虽然最后提交的是一个模型,但参赛者会先训练若干个弱模型,最后再用集成方法进行整合堆叠。这种做法在回归和分类任务中非常常见。

至于同样倍受瞩目 Exploration,近期,无数数据科学家已经一遍遍强调了探索性数据分析(EDA)的重要性,而他们的呼吁起到了效果。如果我们没法确保数据的可靠性,最后的模型很可能会出问题。

但对于这个结果,有些人可能会感到意外。因为如果想在竞赛中取得好名次,调参和模型微调肯定必不可少,但这两个时间、精力消耗的 “大户” 的排名却不高。所以我们应该牢记,虽然集成是建模过程的最后一步,但我们应该在特征工程和模型调整上投入相当长的时间。

最为人津津乐道的子平台

742b2adb2d2e7a69721e8262063a09e5a1e9c185

蓝:数据集;橙:Kernel;绿:竞赛;红:Learn

既然 Kaggle 是个数据科学竞赛平台,用户们讨论的内容自然是参加什么竞赛,用了什么数据集,并分享看到的实用代码。而根据上图的曲线,自从 2016 年推出后,代码 Kernel 的受欢迎度一路飙升,毕竟用户们可以在上面看到其他参赛者自愿公开的模型代码,这对于学习和交流来说是不可多得的优质资源。

此外,Kaggle 还推出了课程子平台 Kaggle Learn,虽然目前在讨论度上不及数据集、Kernel 和竞赛,但这些课程主要面向初学者。未来,随着课程内容的丰富和新手人数的增加,这个板块的流行指日可待。


原文发布时间为:2018-08-14

本文作者:Shivam Bansal 

本文来自云栖社区合作伙伴新智元,了解相关信息可以关注“AI_era”。

原文链接:Kaggle CTO 力荐:从 Kaggle 历史数据看机器学习竞赛趋势

相关文章
|
4月前
|
机器学习/深度学习 算法 数据挖掘
【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)
【Python机器学习】决策树、K近邻、神经网络等模型对Kaggle房价预测实战(附源码和数据集)
80 0
|
11月前
|
机器学习/深度学习 架构师 算法框架/工具
机器学习天降福音!数据科学家、Kaggle大师发布「ML避坑宝典」
机器学习天降福音!数据科学家、Kaggle大师发布「ML避坑宝典」
|
机器学习/深度学习 数据采集 算法
机器学习算法竞赛实战--3,数据探索
数据探索可以帮助回答以上这3点,并能够保证竞赛的最佳结果,它是一种总结,可视化和熟悉数据集中重要特征的方法。数据探索有利于我们发现数据的一些特征,数据之间的关联性有助于后续的特征构建
69 0
机器学习算法竞赛实战--3,数据探索
|
机器学习/深度学习 算法 搜索推荐
机器学习算法竞赛实战--2,问题建模
我们可以将数据理解分为两个部分,分别是数据基础层和数据描述层当然在问题建模阶段,并不需要对数据有特别深的理解,只需要做基本的分析即可在后面的数据探索阶段,再深入理解数据,从数据中发现关键信息
73 0
机器学习算法竞赛实战--2,问题建模
|
机器学习/深度学习 人工智能 算法
机器学习算法竞赛实战--1,初见竞赛
在时代的洪流之下,各行各业都在寻求生存之道利用先进的技术完成转型则是一个很好的办法,有些企业就开始寻求人工智能的助力开始向社会征求优秀的算法解决方案,此外,在学术领域的研究者们也渴望获得企业的场景和数据用于算法研究这就催生出了各种竞赛平台。对于有志于进军机器学习相关领域从事研究或者相关工作的初学者来说竞赛是性价比极高的一个实战选择,可以说是0门槛,任何人都可以参加。
93 0
机器学习算法竞赛实战--1,初见竞赛
|
机器学习/深度学习 数据采集 数据可视化
机器学习实战 | 逻辑回归应用之“Kaggle房价预测”
基于kaggle网站所提供的爱荷华州埃姆斯的住宅数据信息,预测每间房屋的销售价格,数据的标签SalePrice是连续性数据,因此可以判定这是一个回归问题。
机器学习实战 | 逻辑回归应用之“Kaggle房价预测”
|
机器学习/深度学习 人工智能 自然语言处理
人工智能和机器学习的4大应用趋势
从科技初创企业到全球巨头,他们一直在寻求与趋势技术结合来扩展业务。
人工智能和机器学习的4大应用趋势
|
机器学习/深度学习 算法
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(三)
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(三)
180 0
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(三)
|
机器学习/深度学习 vr&ar
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(二)
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(二)
178 0
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(二)
|
机器学习/深度学习 存储
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(一)
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(一)
291 0
​Kaggle M5 Forecasting:传统预测方法与机器学习预测方法对比(一)

热门文章

最新文章