阿里云原生数据库POLARDB压力测试报告

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云原生数据库 PolarDB 分布式版,标准版 2核8GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: POLARDB是阿里云ApsaraDB数据库团队研发的基于云计算架构的下一代关系型数据库,其最大的特色是计算节点(主要做SQL解析以及存储引擎计算的服务器)与存储节点(主要做数据块存储,数据库快照的服务器)分离,其次,与传统的云数据库一个实例一份数据拷贝不同,同一个实例的所有节点(包括读写节点和只读.

POLARDB介绍

POLARDB是阿里云ApsaraDB数据库团队研发的基于云计算架构的下一代关系型数据库,其最大的特色是计算节点(主要做SQL解析以及存储引擎计算的服务器)与存储节点(主要做数据块存储,数据库快照的服务器)分离,其次,与传统的云数据库一个实例一份数据拷贝不同,同一个实例的所有节点(包括读写节点和只读节点)都访问存储节点上的同一份数据,最后,借助优秀的RDMA网络以及最新的块存储技术,PolarDB的数据备份耗时可以做到秒级别(备份时间与底层数据量无关),这三点相结合,我们可以推断出POLARDB不但满足了公有云计算环境下用户业务快速弹性扩展的刚性需求(只读实例扩展时间与底层数据量无关),同时也满足了互联网环境下用户对数据库服务器高可用的需求(服务器宕机后无需搬运数据重启进程即可服务)。

以下测试来自于袋鼠云技术部。

POLARDB架构

POLARDB_

一写多读

POLARDB采用分布式集群架构,一个集群包含一个主实例和至少一个只读实例(暂时仅支持一个,用于保障高可用)。主实例处理读写请求,只读实例仅处理读请求。主实例和只读实例之间采用Active-Active的Failover方式,提供数据库的高可用服务。

计算与存储分离

POLARDB采用计算与存储分离的设计理念,满足公有云计算环境下用户业务弹性扩展的刚性需求。数据库的计算节点(DB Server)仅存储元数据,而将数据文件、Redo Log等存储于远端的存储节点(Chunk Server)。各计算节点之间仅需同步Redo Log相关的元数据信息,极大降低了主实例和只读实例间的延迟,而且在主实例故障时,只读实例可以快速切换为主服务器。

读写分离

读写分离数据库接入功能,是POLARDB集群默认免费提供的一个透明、高可用、自适应的负载均衡能力。通过读写分离地址,SQL请求自动转发到POLARDB集群的各个实例,提供聚合、高吞吐的并发SQL处理能力。

高速链路互联

数据库的计算节点和存储节点之间采用高速网络互联,并通过RDMA协议进行数据传输,使得I/O性能不再成为瓶颈。

共享分布式存储

多个计算节点共享一份数据,而不是每个计算节点都存储一份数据,极大降低了用户的存储成本。基于全新打造的分布式块设备和文件系统,存储容量可以在线平滑扩展,不会受到单机服务器配置的影响,可应对上百TB级别的数据规模。

数据多副本、Parallel-Raft协议

数据库存储节点的数据采用多副本形式,确保数据的可靠性,并通过Parallel-Raft协议保证数据的一致性。
优点:
备份速度快,增加只读节点速度快。
只读实例无延迟。

参数
POLARDB默认关闭了doublewrite buffer,关闭了binlog。
image

压测方案

使用sysbench oltp标准压测程序分别压测读、写两种场景的性能。

环境准备
PolarDB: 8C64G
ECS:2C2G, CentOS 2.7(三台)
Sysbench 0.5

sysbench安装
yum -y install mysql-devel 

yum -y install automake 

yum -y install libtool 

wget https://github.com/akopytov/sysbench/archive/0.5.zip
unzip 0.5.zip
cd sysbench-0.5
./autogen.sh
./configure
make
cd sysbench

压测步骤

准备数据
sysbenchpath/sysbenchtest=sysbench_path/tests/db/oltp.lua --mysql-host=ipmysqlport=3306mysqluser=mysql_user --mysql-password=mysqlpasswordmysqldb=table_name --mysql-table-engine=innodb --oltp-table-size=[table_size/10] --oltp-tables-count=$oltp_tables_count -db-driver=mysql prepare

注意事项:
1.如果测试POLARDB不能使用外网连接串(时延高难以达到最佳性能)使用非VPC的内网连接串要达到最佳的性能需要使用3~4台ECS同时进行压测才能发挥Polardb最佳性能,使用VPC网络单台ECS压测就能达到POLARDB最佳的性能(建议使用VPC连接串)

2.POLARDB的特点是读写分离,sysbench测试时需要单独测试读和写,避免使用读写混合sysbench命令测试,这样能最大的发挥POLARDB的性能优势,详细测试命令如下:

压测写性能

使用sysbench准备数据,单表1000万数据,总共100个表,每个表的空间大约2G。
sysbenchpath/sysbenchtest=sysbenchpath/tests/db/oltp.lua --mysql-host=ipoltptablescount=oltp_tables_count --mysql-user=mysqlusermysqlpassword=mysql_password --mysql-port=3306 --db-driver=mysql --oltp-table-size=[table_size/10] --mysql-db=tablenamemaxrequests=[tablesize/10]maxtime=max_time --oltp_simple_ranges=0 --oltp-distinct-ranges=0 --oltp-sum-ranges=0 --oltporder-ranges=0 --oltp-point-selects=0 --num-threads=$threads --randtype=uniform run

压测读性能

压测选用5个表,每个表1000万数据,总共1亿条数据进行压测。分表采用1,2,4,8,16,32个并发测试写入性能。
sysbenchpath/sysbenchtest=sysbenchpath/tests/db/oltp.lua --mysql-host=ipoltptablescount=oltp_tables_count --mysql-user=mysqlusermysqlpassword=mysql_password --mysql-port=3306 --db-driver=mysql --oltp-table-size=[table_size/10] --mysql-db=tablenamemaxrequests=[tablesize/10]oltpsimpleranges=0oltpdistinctranges=0oltpsumranges=0oltporderranges=0maxtime=max_time --oltp-read-only=on --num-threads=$threads run

注:

  $sysbench_path:sysbench源码位置
$ip数据库的IP地址者公网连接串
$mysql_user 数据库用户名
$mysql_password 数据库密码
$table_name 数据库的名字
$oltp_tables_count 数据库表的数量
$table_size 数据库表的大小
AI 代码解读

压测结果

读取性能压测结果

在32个并发的时候,取得了最好的读区性能,读取QPS为46813.94,平均SQL响应时间2.05毫秒。
image
bbbbf5ce278d2494f58716d1545be7bec97b6073

写性能压测结果
32个并发的时候,取得了最好的写入性能,写QPS为156273.72,平均事物响应时间5.09毫秒。
image
f3ed45882e5e9b7ee339babfceaad2a53f87c0b0

看文福利!每天可抽奖,代金券,天猫精灵等奖品等你拿!点击进入抽奖页面

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
打赏
0
0
0
0
9890
分享
相关文章
PolarDB开源数据库进阶课17 集成数据湖功能
本文介绍了如何在PolarDB数据库中接入pg_duckdb、pg_mooncake插件以支持数据湖功能, 可以读写对象存储的远程数据, 支持csv, parquet等格式, 支持delta等框架, 并显著提升OLAP性能。
91 1
PolarDB开源数据库进阶课15 集成DeepSeek等大模型
本文介绍了如何在PolarDB数据库中接入私有化大模型服务,以实现多种应用场景。实验环境依赖于Docker容器中的loop设备模拟共享存储,具体搭建方法可参考相关系列文章。文中详细描述了部署ollama服务、编译并安装http和openai插件的过程,并通过示例展示了如何使用这些插件调用大模型API进行文本分析和情感分类等任务。此外,还探讨了如何设计表结构及触发器函数自动处理客户反馈数据,以及生成满足需求的SQL查询语句。最后对比了不同模型的回答效果,展示了deepseek-r1模型的优势。
142 0
PolarDB开源数据库进阶课14 纯享单机版
PolarDB不仅支持基于“共享存储+多计算节点”的集群版,还提供类似开源PostgreSQL的单机版。单机版部署简单,适合大多数应用场景,并可直接使用PostgreSQL生态插件。通过Docker容器、Git克隆代码、编译软件等步骤,即可完成PolarDB单机版的安装与配置。具体操作包括启动容器、进入容器、克隆代码、编译软件、初始化实例、配置参数及启动数据库。此外,还有多个相关教程和视频链接供参考,帮助用户更好地理解和使用PolarDB单机版。
96 0
小鹏汽车选用阿里云PolarDB,开启AI大模型训练新时代
PolarDB-PG云原生分布式数据库不仅提供了无限的扩展能力,还借助丰富的PostgreSQL生态系统,统一了后台技术栈,极大地简化了运维工作。这种强大的组合不仅提高了系统的稳定性和性能,还为小鹏汽车大模型训练的数据管理带来了前所未有的灵活性和效率。
刷新世界纪录!阿里云PolarDB凭借创新的「三层解耦」架构刷新TPC-C基准测试世界纪录
刷新世界纪录!阿里云PolarDB凭借创新的「三层解耦」架构刷新TPC-C基准测试世界纪录
客户说|信美相互人寿携手阿里云PolarDB,引领保险IFRS17场景创新
客户说|信美相互人寿携手阿里云PolarDB,引领保险IFRS17场景创新
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
喜报|PolarDB开源社区荣获“2024数据库国内活跃开源项目”奖
首届全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)圆满收官
首届全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)圆满收官
客户说|太美医疗选择阿里云PolarDB,助力医药研发数据安全应用
客户说|太美医疗选择阿里云PolarDB,助力医药研发数据安全应用

相关产品

  • 云原生数据库 PolarDB
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等