高质量C++/C编程指南

  1. 云栖社区>
  2. 博客>
  3. 正文

高质量C++/C编程指南

dukeke 2015-07-20 21:27:48 浏览432
展开阅读全文

第 1 章 文件结构

每个 C++/C 程序通常分为两个文件。一个文件用于保存程序的声明( declaration ),称为头文件。另一个文件用于保存程序的实现( implementation ),称为定义( definition )文件。
C++/C 程序的头文件以“ .h ”为后缀, C 程序的定义文件以“ .c ”为后缀, C++ 程序的定义文件通常以“ .cpp ”为后缀(也有一些系统以“ .cc ”或“ .cxx ”为后缀)。

1.1 版权和版本的声明

版权和版本的声明位于头文件和定义文件的开头(参见示例 1-1 ),主要内容有:
( 1 )版权信息。
( 2 )文件名称,标识符,摘要。
( 3 )当前版本号,作者 / 修改者,完成日期。
( 4 )版本历史信息。
示例 1-1 版权和版本的声明

1.2 头文件的结构

头文件由三部分内容组成:
( 1 )头文件开头处的版权和版本声明(参见示例 1-1 )。
( 2 )预处理块。
( 3 )函数和类结构声明等。
假设头文件名称为 graphics.h,头文件的结构参 见示例 1-2 。
l 【规则 1-2-1 】 为了防止头文件被重复引用,应当用 ifndef/define/endif 结构产生预处理块。
l 【规则 1-2-2 】 用 #include < filename.h> 格式来引用标准库的头文件(编译器将从标准库目录开始搜索)。
l 【规则 1-2-3 】 用 #include “filename.h” 格式来引用非标准库的头文件(编译器将从用户的工作目录开始搜索)。
2 【建议 1-2-1 】 头文件中只存放“声明”而不存放“定义”
在 C++ 语法中,类的成员函数可以在声明的同时被定义,并且自动成为内联函数。这虽然会带来书写上的方便,但却造成了风格不一致,弊大于利。建议将成员函数的定义与声明分开,不论该函数体有多么小。
2 【建议 1-2-2 】 不提倡使用全局变量,尽量不要在头文件中出现象 extern int value 这类声明。
// 版权和版本声明见示例 1-1 ,此处省略。

#ifndef GRAPHICS_H // 防止 graphics.h 被重复引用
#define GRAPHICS_H
#include <math.h> // 引用标准库的头文件#include “myheader.h” // 引用非标准库的头文件void Function1(…); // 全局函数声明class Box // 类结构声明
{
…
};
#endif

示例 1-2 C++/C头文件的结构

1.3 定义文件的结构

定义文件有三部分内容:
(1) 定义文件开头处的版权和版本声明(参见示例 1-1 )。
(2) 对一些头文件的引用。
(3) 程序的实现体(包括数据和代码)。
假设定义文件的名称为 graphics.cpp, 定义 文件的结构参 见示例 1-3 。
// 版权和版本声明见示例 1-1 ,此处省略。

#include “graphics.h” // 引用头文件// 全局函数的实现体
void Function1(…)
{
…
}
// 类成员函数的实现体
void Box::Draw(…)
{
…
}

示例 1-3 C++/C定义文件的结构

1.4 头文件的作用

早期的编程语言如 Basic 、 Fortran 没有头文件的概念, C++/C 语言的初学者虽然会用使用头文件,但常常不明其理。这里对头文件的作用略作解释:
( 1 )通过头文件来调用库功能。在很多场合,源代码不便(或不准)向用户公布,只要向用户提供头文件和二进制的库即可。用户只需要按照头文件中的接口声明来调用库功能,而不必关心接口怎么实现的。编译器会从库中提取相应的代码。
( 2 )头文件能加强类型安全检查。如果某个接口被实现或被使用时,其方式与头文件中的声明不一致,编译器就会指出错误,这一简单的规则能大大减轻程序员调试、改错的负担。

1.5 目录结构

如果一个软件的头文件数目比较多(如超过十个),通常应将头文件和定义文件分别保存于不同的目录,以便于维护。
例如可将头文件保存于 include 目录,将定义文件保存于 source 目录(可以是多级目录)。
如果某些头文件是私有的,它不会被用户的程序直接引用,则没有必要公开其“声明”。为了加强信息隐藏,这些私有的头文件可以和定义文件存放于同一个目录。

第 2 章 程序的版式

版式虽然不会影响程序的功能,但会影响可读性。程序的版式追求清晰、美观,是程序风格的重要构成因素。
可以把程序的版式比喻为“书法”。好的“书法”可让人对程序一目了然,看得兴致勃勃。差的程序“书法”如螃蟹爬行,让人看得索然无味,更令维护者烦恼有加。请程序员们学习程序的“书法”,弥补大学计算机教育的漏洞,实在很有必要。

2.1 空行

空行起着分隔程序段落的作用。空行得体(不过多也不过少)将使程序的布局更加清晰。空行不会浪费内存,虽然打印含有空行的程序是会多消耗一些纸张,但是值得。所以不要舍不得用空行。
l 【规则 2-1-1 】 在每个类声明之后、每个函数定义结束之后都要加空行。参见示例 2-1 ( a )
l 【规则 2-1-2 】 在一个函数体内,逻揖上密切相关的语句之间不加空行,其它地方应加空行分隔。参见示例 2-1 ( b )

// 空行
void Function1(…)
{
…
}
// 空行
void Function2(…)
{
…
}
// 空行
void Function3(…)
{
…
}
// 空行
while (condition)
{
statement1;
// 空行
if (condition)
{
statement2;
}
else
{
statement3;
}
// 空行
statement4;
}

示例 2-1(a) 函数之间的空行 示例2-1(b) 函数内部的空行

2.2 代码行

l 【规则 2-2-1 】 一行代码只做一件事情,如只定义一个变量,或只写一条语句。这样的代码容易阅读,并且方便于写注释。
l 【规则 2-2-2 】 if 、 for 、 while 、 do 等语句自占一行,执行语句不得紧跟其后。不论执行语句有多少都要加 {} 。这样可以防止书写失误。
示例 2-2 ( a )为风格良好的代码行,示例 2-2 ( b )为风格不良的代码行。

int width; // 宽度
int height; // 高度
int depth; // 深度
int width, height, depth; // 宽度高度深度
x = a + b;
y = c + d;
z = e + f;
X = a + b; y = c + d; z = e + f;
if (width < height)
{
dosomething();
}
if (width < height) dosomething();
for (initialization; condition; update)
{
dosomething();
}
// 空行
other();
for (initialization; condition; update)
dosomething();
other();

示例 2-2(a) 风格良好 的代码行 示例2-2(b) 风格不良 的代码行
2 【建议 2-2-1 】 尽可能在定义变量的同时初始化该变量(就近原则)
如果变量的引用处和其定义处相隔比较远,变量的初始化很容易被忘记。如果引用了未被初始化的变量,可能会导致程序错误。本建议可以减少隐患。例如

int width = 10; // 定义并初绐化width
int height = 10; // 定义并初绐化height
int depth = 10; // 定义并初绐化depth

2.3 代码行内的空格

l 【规则 2-3-1 】 关键字之后要留空格。象 const 、 virtual 、 inline 、 case 等关键字之后至少要留一个空格,否则无法辨析关键字。象 if 、 for 、 while 等关键字之后应留一个空格再跟左括号‘(’,以突出关键字。
l 【规则 2-3-2 】 函数名之后不要留空格,紧跟左括号‘(’,以与关键字区别。
l 【规则 2-3-3 】 ‘(’向后紧跟,‘)’、‘,’、‘ ; ‘向前紧跟,紧跟处不留空格。
l 【规则 2-3-4 】 ‘,’之后要留空格,如 Function(x, y, z) 。如果‘ ; ‘不是一行的结束符号,其后要留空格,如 for (initialization; condition; update) 。
l 【规则 2-3-5 】 赋值操作符、比较操作符、算术操作符、逻辑操作符、位域操作符,如“ = ”、“ += ” “ >= ”、“ <= ”、“ + ”、“ * ”、“ % ”、“ && ”、“ || ”、“ << ” , “ ^ ”等二元操作符的前后应当加空格。
l 【规则 2-3-6 】 一元操作符如“ ! ”、“ ~ ”、“ ++ ”、“ – ”、“ & ”(地址运算符)等前后不加空格。
l 【规则 2-3-7 】 象“ []”、“ .”、“->” 这类操作符前后不加空格。
2 【建议 2-3-1 】 对于表达式比较长的 for 语句和 if 语句,为了紧凑起见可以适当地去掉一些空格,如

 for (i=0; i<10; i++)和 if ((a<=b) && (c<=d))
void Func1(int x, int y, int z); // 良好的风格
void Func1 (int x,int y,int z); // 不良的风格
if (year >= 2000) // 良好的风格
if(year>=2000) // 不良的风格
if ((a>=b) && (c<=d)) // 良好的风格
if(a>=b&&c<=d) // 不良的风格
for (i=0; i<10; i++) // 良好的风格
for(i=0;i<10;i++) // 不良的风格
for (i = 0; I < 10; i ++) // 过多的空格
x = a < b ? a : b; // 良好的风格
x=a<b?a:b; // 不好的风格
int *x = &y; // 良好的风格
int * x = & y; // 不良的风格
array[5] = 0; // 不要写成 array [ 5 ] = 0;
a.Function(); // 不要写成 a . Function();
b->Function(); // 不要写成 b -> Function();

示例 2-3 代码行内的空格

2.4 对齐

l 【规则 2-4-1 】 程序的分界符‘ { ‘和‘ } ‘应独占一行并且位于同一列,同时与引用它们的语句左对齐。
l 【规则 2-4-2 】 { } 之内的代码块在‘ { ‘右边数格处左对齐。
示例 2-4 ( a )为风格良好的对齐,示例 2-4 ( b )为风格不良的对齐。

void Function(int x)
{
… // program code
}
void Function(int x){
… // program code
}
if (condition)
{
… // program code
}
else
{
… // program code
}
if (condition){
… // program code
}
else {
… // program code
}
for (initialization; condition; update)
{
… // program code
}
for (initialization; condition; update){
… // program code
}
While (condition)
{
… // program code
}
while (condition){
… // program code
}
如果出现嵌套的{},则使用缩进对齐,如:
{
…
{
…
}
…
}

示例 2-4(a) 风格良好 的对齐 示例2-4(b) 风格不良 的对齐

2.5 长行拆分

l 【规则 2-5-1 】 代码行最大长度宜控制在 70 至 80 个字符以内。代码行不要过长,否则眼睛看不过来,也不便于打印。
l 【规则 2-5-2 】 长表达式要在低优先级操作符处拆分成新行,操作符放在新行之首(以便突出操作符)。拆分出的新行要进行适当的缩进,使排版整齐,语句可读。

if ((very_longer_variable1 >= very_longer_variable12)
&& (very_longer_variable3 <= very_longer_variable14)
&& (very_longer_variable5 <= very_longer_variable16))
{
dosomething();
}
virtual CMatrix CMultiplyMatrix (CMatrix leftMatrix,
CMatrix rightMatrix);
for (very_longer_initialization;
very_longer_condition;
very_longer_update)
{
dosomething();
}

第3章 命名规则

比较著名的命名规则当推Microsoft公司的“匈牙利”法,该命名规则的主要思想是“在变量和函数名中加入前缀以增进人们对程序的理解”。例如所有的字符变量均以ch为前缀,若是指针变量则追加前缀p。如果一个变量由ppch开头,则表明它是指向字符指针的指针。
“匈牙利”法最大的缺点是烦琐,例如

int i, j, k;
float x, y, z;

倘若采用“匈牙利”命名规则,则应当写成
int iI, iJ, ik; // 前缀 i表示int类型
float fX, fY, fZ; // 前缀 f表示float类型
如此烦琐的程序会让绝大多数程序员无法忍受。
据考察,没有一种命名规则可以让所有的程序员赞同,程序设计教科书一般都不指定命名规则。命名规则对软件产品而言并不是“成败悠关”的事,我们不要化太多精力试图发明世界上最好的命名规则,而应当制定一种令大多数项目成员满意的命名规则,并在项目中贯彻实施。

3.1 共性规则

本节论述的共性规则是被大多数程序员采纳的,我们应当在遵循这些共性规则的前提下,再扩充特定的规则,如3.2节。
l 【规则3-1-1】标识符应当直观且可以拼读,可望文知意,不必进行“解码”。
标识符最好采用英文单词或其组合,便于记忆和阅读。切忌使用汉语拼音来命名。程序中的英文单词一般不会太复杂,用词应当准确。例如不要把CurrentValue写成NowValue。
l 【规则3-1-2】标识符的长度应当符合“min-length && max-information”原则。
几十年前老ANSI C规定名字不准超过6个字符,现今的C++/C不再有此限制。一般来说,长名字能更好地表达含义,所以函数名、变量名、类名长达十几个字符不足为怪。那么名字是否越长约好?不见得! 例如变量名maxval就比maxValueUntilOverflow好用。单字符的名字也是有用的,常见的如i,j,k,m,n,x,y,z等,它们通常可用作函数内的局部变量。
l 【规则3-1-3】命名规则尽量与所采用的操作系统或开发工具的风格保持一致。
例如Windows应用程序的标识符通常采用“大小写”混排的方式,如AddChild。而Unix应用程序的标识符通常采用“小写加下划线”的方式,如add_child。别把这两类风格混在一起用。
l 【规则3-1-4】程序中不要出现仅靠大小写区分的相似的标识符。
例如:

int x, X; // 变量x 与 X 容易混淆
void foo(int x); // 函数foo 与FOO容易混淆
void FOO(float x);

l 【规则3-1-5】程序中不要出现标识符完全相同的局部变量和全局变量,尽管两者的作用域不同而不会发生语法错误,但会使人误解。
l 【规则3-1-6】变量的名字应当使用“名词”或者“形容词+名词”。
例如:

float value;
float oldValue;
float newValue;

l 【规则3-1-7】全局函数的名字应当使用“动词”或者“动词+名词”(动宾词组)。类的成员函数应当只使用“动词”,被省略掉的名词就是对象本身。
例如:

DrawBox(); // 全局函数
box->Draw(); // 类的成员函数

l 【规则3-1-8】用正确的反义词组命名具有互斥意义的变量或相反动作的函数等。
例如:

int minValue;
int maxValue;
int SetValue(…);
int GetValue(…);

2 【建议3-1-1】尽量避免名字中出现数字编号,如Value1,Value2等,除非逻辑上的确需要编号。这是为了防止程序员偷懒,不肯为命名动脑筋而导致产生无意义的名字(因为用数字编号最省事)。

3.2 简单的Windows应用程序命名规则

作者对“匈牙利”命名规则做了合理的简化,下述的命名规则简单易用,比较适合于Windows应用软件的开发。
l 【规则3-2-1】类名和函数名用大写字母开头的单词组合而成。
例如:

class Node; // 类名
class LeafNode; // 类名
void Draw(void); // 函数名
void SetValue(int value); // 函数名

l 【规则3-2-2】变量和参数用小写字母开头的单词组合而成。
例如:

BOOL flag;
int drawMode;

l 【规则3-2-3】常量全用大写的字母,用下划线分割单词。
例如:

const int MAX = 100;
const int MAX_LENGTH = 100;

l 【规则3-2-4】静态变量加前缀s_(表示static)。
例如:

void Init(…)
{
static int s_initValue; // 静态变量
…
}

l 【规则3-2-5】如果不得已需要全局变量,则使全局变量加前缀g_(表示global)。
例如:

int g_howManyPeople; // 全局变量
int g_howMuchMoney; // 全局变量

l 【规则3-2-6】类的数据成员加前缀m_(表示member),这样可以避免数据成员与成员函数的参数同名。
例如:

void Object::SetValue(int width, int height)
{
m_width = width;
m_height = height;
}

l 【规则3-2-7】为了防止某一软件库中的一些标识符和其它软件库中的冲突,可以为各种标识符加上能反映软件性质的前缀。例如三维图形标准OpenGL的所有库函数均以gl开头,所有常量(或宏定义)均以GL开头。

第4章 C++指针入门

这是一篇我所见过的关于指针的最好的入门级文章,它可使初学者在很短的时间内掌握复杂的指针操作。虽然,现在的Java、C#等语言已经取消了指针,但作为一个C++程序员,指针的直接操作内存,在数据操作方面有着速度快,节约内存等优点,仍是很多C++程序员的最爱。指针就像是一把良剑,就看你怎么去应用它!
 
什么是指针?
  其实指针就像是其它变量一样,所不同的是一般的变量包含的是实际的真实的数据,而指针是一个指示器,它告诉程序在内存的哪块区域可以找到数据。这是一个非常重要的概念,有很多程序和算法都是围绕指针而设计的,如链表。
开始学习
  如何定义一个指针呢?就像你定义一个其它变量一样,只不过你要在指针名字前加上一个星号。我们来看一个例子:
  下面这个程序定义了两个指针,它们都是指向整型数据。
  

int* pNumberOne;
int* pNumberTwo;

  你注意到在两个变量名前的“p”前缀了吗?这是程序员通常在定义指针时的一个习惯,以提高便程序的阅读性,表示这是个指针。现在让我们来初始化这两个指针:

pNumberOne = &some_number;
pNumberTwo = &some_other_number; 

  &号读作“什么的地址”,它表示返回的是变量在内存中的地址而不是变量本身的值。在这个例子中,pNumberOne 等于some_number的地址,所以现在pNumberOne指向some_number。 如果现在我们在程序中要用到some_number,我们就可以使用pNumberOne。
我们来学习一个例子:
  在这个例子中你将学到很多,如果你对指针的概念一点都不了解,我建议你多看几遍这个例子,指针是个很复杂的东西,但你会很快掌握它的。
  这个例子用以增强你对上面所介绍内容的了解。它是用C编写的(注:原英文版是用C写的代码,译者重新用C++改写写了所有代码,并在DEV C++ 和VC++中编译通过!)

#include <iostream.h>
void main()
{
// 声明变量:
int nNumber;
int *pPointer;
// 现在给它们赋值:
nNumber = 15;
pPointer = &nNumber;
//打印出变量nNumber的值:
cout<<"nNumber is equal to :"<< nNumber<<endl;
// 现在通过指针改变nNumber的值:
*pPointer = 25;
//证明nNumber已经被上面的程序改变
//重新打印出nNumber的值: 
cout<<"nNumber is equal to :"<<nNumber<<endl; 
}

  通读一下这个程序,编译并运行它,务必明白它是怎样工作的。如果你完成了,准备好,开始下一小节。
陷井!
  试一下,你能找出下面这段程序的错误吗?

#include <iostream.h>
int *pPointer;
void SomeFunction();
{
int nNumber;
nNumber = 25;
//让指针指向nNumber:
pPointer = &nNumber;
}
void main()
{
SomeFunction(); //为pPointer赋值
//为什么这里失败了?为什么没有得到25
cout<<"Value of *pPointer: "<<*pPointer<<endl;
}

  这段程序先调用了SomeFunction函数,创建了个叫nNumber的变量,接着让指针pPointer指向了它。可是问题出在哪儿呢?当函数结束后,nNumber被删掉了,因为这一个局部变量。局部变量在定义它的函数执行完后都会被系统自动删掉。也就是说当SomeFunction 函数返回主函数main()时,这个变量已经被删掉,但pPointer还指着变量曾经用过的但现在已不属于这个程序的区域。如果你还不明白,你可以再读读这个程序,注意它的局部变量和全局变量,这些概念都非常重要。
  但这个问题怎么解决呢?答案是动态分配技术。注意这在C和C++中是不同的。由于大多数程序员都是用C++,所以我用到的是C++中常用的称谓。
动态分配
  动态分配是指针的关键技术。它是用来在不必定义变量的情况下分配内存和让指针去指向它们。尽管这么说可能会让你迷惑,其实它真的很简单。下面的代码就是一个为一个整型数据分配内存的例子:

int *pNumber;
pNumber = new int; 

  第一行声明一个指针pNumber。第二行为一个整型数据分配一个内存空间,并让pNumber指向这个新内存空间。下面是一个新例,这一次是用double双精型:

double *pDouble;
pDouble = new double; 

  这种格式是一个规则,这样写你是不会错的。
  但动态分配又和前面的例子有什么不同呢?就是在函数返回或执行完毕时,你分配的这块内存区域是不会被删除的所以我们现在可以用动态分配重写上面的程序:

#include <iostream.h>
int *pPointer;
void SomeFunction()
{
// 让指针指向一个新的整型
pPointer = new int;
*pPointer = 25;
}
void main()
{
SomeFunction(); // 为pPointer赋值
cout<<"Value of *pPointer: "<<*pPointer<<endl; 
} 

  通读这个程序,编译并运行它,务必理解它是怎样工作的。当SomeFunction 调用时,它分配了一个内存,并让pPointer指向它。这一次,当函数返回时,新的内存区域被保留下来,所以pPointer始终指着有用的信息,这是因为了动态分配。但是你再仔细读读上面这个程序,虽然它得到了正确结果,可仍有一个严重的错误。
分配了内存,别忘了回收
  太复杂了,怎么会还有严重的错误!其实要改正并不难。问题是:你动态地分配了一个内存空间,可它绝不会被自动删除。也就是说,这块内存空间会一直存在,直到你告诉电脑你已经使用完了。可结果是,你并没有告诉电脑你已不再需要这块内存空间了,所以它会继续占据着内存空间造成浪费,甚至你的程序运行完毕,其它程序运行时它还存在。当这样的问题积累到一定程度,最终将导致系统崩溃。所以这是很重要的,在你用完它以后,请释放它的空间,如:

delete pPointer; 

  这样就差不多了,你不得不小心。在这你终止了一个有效的指针(一个确实指向某个内存的指针)。
  下面的程序,它不会浪费任何的内存:

#include <iostream.h>
int *pPointer;
void SomeFunction()
{
// 让指针指向一个新的整型
pPointer = new int;
*pPointer = 25;
}
void main()
{
SomeFunction(); //为pPointer赋值
cout<<"Value of *pPointer: "<<*pPointer<<endl;
delete pPointer;
} 

  只有一行与前一个程序不同,但就是这最后一行十分地重要。如果你不删除它,你就会制造一起“内存漏洞”,而让内存逐渐地泄漏。
  (译者:假如在程序中调用了两次SomeFunction,你又该如何修改这个程序呢?请读者自己思考)
传递指针到函数
  传递指针到函数是非常有用的,也很容易掌握。如果我们写一个程序,让一个数加上5,看一看这个程序完整吗?:

#include <iostream.h>
void AddFive(int Number)
{
Number = Number + 5;
}
void main()
{
int nMyNumber = 18;
cout<<"My original number is "<<nMyNumber<<endl; 
AddFive(nMyNumber);
cout<<"My new number is "<<nMyNumber<<endl; 
//得到了结果23吗?问题出在哪儿?
} 

  问题出在函数AddFive里用到的Number是变量nMyNumber的一个副本而传递给函数,而不是变量本身。因此, ” Number = Number + 5” 这一行是把变量的副本加了5,而原始的变量在主函数main()里依然没变。试着运行这个程序,自己去体会一下。
  要解决这个问题,我们就要传递一个指针到函数,所以我们要修改一下函数让它能接受指针:把’void AddFive(int Number)’ 改成 ‘void AddFive(int* Number)’ 。下面就是改过的程序,注意函数调用时要用&号,以表示传递的是指针:

#include <iostream.h>
void AddFive(int* Number)
{
*Number = *Number + 5;
}
void main()
{
int nMyNumber = 18;
cout<<"My original number is "<<nMyNumber<<endl; 
AddFive(&nMyNumber);
cout<<"My new number is "<<nMyNumber<<endl; 
}

  试着自己去运行它,注意在函数AddFive的参数Number前加*号的重要性:它告诉编译器,我们是把指针所指的变量加5。而不并指针自己加5。
  最后,如果想让函数返回指针的话,你可以这么写:

int * MyFunction(); 

  在这句里,MyFunction返回一个指向整型的指针。
指向类的指针
  指针在类中的操作要格外小心,你可以用如下的办法定义一个类:

class MyClass
{
  public:
  int m_Number;
  char m_Character;
}; 

  接着你就可以定义一个MyClass 类的变量了:

MyClass thing; 

  你应该已经知道怎样去定义一个指针了吧:

MyClass *thing; 

  接着你可以分配个内存空间给它:

thing = new MyClass; 

  注意,问题出现了。你打算怎样使用这个指针呢,通常你可能会写’thing.m_Number’,但是thing是类吗,不,它是一个指向类的指针,它本身并不包含一个叫m_Number的变量。所以我们必须用另一种方法:就是把’.’(点号)换成 -> ,来看下面的例子:

class MyClass
{
public:
int m_Number;
char m_Character;
};
void main()
{
MyClass *pPointer;
pPointer = new MyClass;
pPointer->m_Number = 10;
pPointer->m_Character = 's';
delete pPointer;
}

指向数组的指针
  你也可以让指针指向一个数组,按下面的方法操作:

int *pArray;
pArray = new int[6]; 

  程序会创建一个指针pArray,让它指向一个有六个元素的数组。另外一种方法,不用动态分配:

int *pArray;
int MyArray[6];
pArray = &MyArray[0]; 

  注意,&MyArray[0] 也可以简写成 MyArray ,都表示是数组的第一个元素地址。但如果写成pArray = &MyArray可能就会出问题,结果是 pArray 指向的是指向数组的指针(在一维数组中尽管与&MyArray[0]相等),而不是你想要的,在多维数组中很容易出错。
在数组中使用指针
  一旦你定义了一个指向数组的指针,你该怎样使用它呢?让我们来看一个例子,一个指向整型数组的指针:

#include <iostream.h>
void main()
{
int Array[3];
Array[0] = 10;
Array[1] = 20;
Array[2] = 30;
int *pArray;
pArray = &Array[0];
cout<<"pArray points to the value %d\n"<<*pArray<<endl;
}

  如果让指针指向数组元素中的下一个,可以用pArray++.也可以用你应该能想到的pArray + 1,都会让指针指向数组的下一个元素。要注意的是你在移动指针时,程序并不检查你是否已经移动地超出了你定义的数组,也就是说你很可能通过上面的简单指针加操作而访问到数组以外的数据,而结果就是,可能会使系统崩溃,所以请格外小心。
  当然有了pArray + 1,也可以有pArray - 1,这种操作在循环中很常用,特别是while循环中。
  另一个需要注意的是,如果你定义了一个指向整型数的指针:int* pNumberSet ,你可以把它当作是数组,如:pNumberSet[0] 和 pNumberSet是相等的,pNumberSet[1]与(pNumberSet + 1)也是相等的。
  在这一节的最后提一个警告:如果你用 new 动态地分配了一个数组,

int *pArray;
pArray = new int[6]; 
  别忘了回收, 
delete[] pArray; 

  这一句是告诉编译器是删除整个数组而不一个单独的元素。千万记住了。
后话
  还有一点要小心,别删除一个根本就没分配内存的指针,典型的是如果没用new分配,就别用delete:

void main()
{
  int number;
  int *pNumber = number;
  delete pNumber; // 错误 - *pNumber 没有用new动态分配内存.
}

常见问题解答
Q:为什么我在编译程序时老是在 new 和 delete语句中出现’symbol undefined’ 错误?
A:new 和 delete都是C++在C上的扩展,这个错误是说编译器认为你现在的程序是C而不C++,当然会出错了。看看你的文件名是不是.cpp结尾。
Q:new 和 malloc有什么不同?
A:new 是C++中的关健字,用来分配内存的一个标准函数。如果没有必要,请不要在C++中使用malloc。因为malloc是C中的语法,它不是为面向对象的C++而设计的。
Q:我可以同时使用free 和 delete吗?
A:你应该注意的是,它们各自所匹配的操作不同。free只用在用malloc分配的内存操作中,而delete只用在用new分配的内存操作中。
引用(写给某些有能力的读者)
  这一节的内容不是我的这篇文章的中心,只是供某些有能力的读者参考。
  有些读者经常问我关于引用和指针的问题,这里我简要地讨论一下。
  在前面指针的学习中,我们知道(&)是读作“什么的地址”,但在下面的程序中,它是读作“什么的引用”

int& Number = myOtherNumber;
Number = 25; 

  引用有点像是一个指向myOtherNumber的指针,不同的是它是自动删除的。所以他比指针在某些场合更有用。与上面等价的代码是:

int* pNumber = &myOtherNumber;
*pNumber = 25; 

  指针与引用另一个不同是你不能修改你已经定义好的引用,也就是说你不能改变它在声明时所指的内容。举个例子:

int myFirstNumber = 25;
int mySecondNumber = 20;
int &myReference = myFirstNumber;
myReference = mySecondNumber;//这一步能使myReference 改变吗?
cout<<myFristNumber<<endl;//结果是20还是25?
  当在类中操作时,引用的值必须在构造函数中设定,例:
CMyClass::CMyClass(int &variable) : m_MyReferenceInCMyClass(variable)
{
  // constructor code here
}

总结
  这篇文章开始可能会较难掌握,所以最好是多读几遍。有些读者暂时还不能理解,在这儿我再做一个简要的总结:
  指针是一个指向内存区域的变量,定义时在变量名前加上星号(*)(如:int *number)。
  你可以得到任何一个变量的地址,只在变量名前加上&(如:pNumber = &my_number)。
  你可以用’new’ 关键字动态分配内存。指针的类型必须与它所指的变量类型一样(如:int *number 就不能指向 MyClass)。
  你可以传递一个指针到函数。必须用’delete’删除你动态分配的内存。
  你可以用&array[0]而让指针指向一个数组。
  你必须用delete[]而不是delete来删除动态分配的数组。
  文章到这儿就差不多结束了,但这些并不就是指针所有的东西,像指向指针的指针等我还没有介绍,因为这些东西对于一个初学指针的人来说还太复杂了,我不能让读者一开始就被太复杂的东西而吓走了。好了,到这儿吧,试着运行我上面写的小程序,也多自己写写程序,你肯定会进步不小的!

第5章 常量

常量是一种标识符,它的值在运行期间恒定不变。C语言用 #define来定义常量(称为宏常量)。C++ 语言除了 #define外还可以用const来定义常量(称为const常量)。

5.1 为什么需要常量

如果不使用常量,直接在程序中填写数字或字符串,将会有什么麻烦?
(1) 程序的可读性(可理解性)变差。程序员自己会忘记那些数字或字符串是什么意思,用户则更加不知它们从何处来、表示什么。
(2) 在程序的很多地方输入同样的数字或字符串,难保不发生书写错误。
(3) 如果要修改数字或字符串,则会在很多地方改动,既麻烦又容易出错。

l 【规则5-1-1】 尽量使用含义直观的常量来表示那些将在程序中多次出现的数字或字符串。
例如:

#define MAX 100
const int MAX = 100; // C++ 语言的const常量
const float PI = 3.14159; // C++ 语言的const常量

5.2 const 与 #define的比较

C++ 语言可以用const来定义常量,也可以用 #define来定义常量。但是前者比后者有更多的优点:
(1) const常量有数据类型,而宏常量没有数据类型。编译器可以对前者进行类型安全检查。而对后者只进行字符替换,没有类型安全检查,并且在字符替换可能会产生意料不到的错误(边际效应)。
(2) 有些集成化的调试工具可以对const常量进行调试,但是不能对宏常量进行调试。

l 【规则5-2-1】在C++ 程序中只使用const常量而不使用宏常量,即const常量完全取代宏常量。

5.3 常量定义规则

l 【规则5-3-1】需要对外公开的常量放在头文件中,不需要对外公开的常量放在定义文件的头部。为便于管理,可以把不同模块的常量集中存放在一个公共的头文件中。
l 【规则5-3-2】如果某一常量与其它常量密切相关,应在定义中包含这种关系,而不应给出一些孤立的值。
例如:

const float RADIUS = 100;
const float DIAMETER = RADIUS * 2;

5.4 类中的常量

有时我们希望某些常量只在类中有效。由于#define定义的宏常量是全局的,不能达到目的,于是想当然地觉得应该用const修饰数据成员来实现。const数据成员的确是存在的,但其含义却不是我们所期望的。const数据成员只在某个对象生存期内是常量,而对于整个类而言却是可变的,因为类可以创建多个对象,不同的对象其const数据成员的值可以不同。
不能在类声明中初始化const数据成员。以下用法是错误的,因为类的对象未被创建时,编译器不知道SIZE的值是什么。

class A
{const int SIZE = 100; // 错误,企图在类声明中初始化const数据成员
int array[SIZE]; // 错误,未知的SIZE
};

const数据成员的初始化只能在类构造函数的初始化表中进行,例如

class A
{…
A(int size); // 构造函数
const int SIZE ;
};
A::A(int size) : SIZE(size) // 构造函数的初始化表
{
…
}
A a(100); // 对象 a 的SIZE值为100
A b(200); // 对象 b 的SIZE值为200

怎样才能建立在整个类中都恒定的常量呢?别指望const数据成员了,应该用类中的枚举常量来实现。例如

class A
{enum { SIZE1 = 100, SIZE2 = 200}; // 枚举常量
int array1[SIZE1];
int array2[SIZE2];
};

枚举常量不会占用对象的存储空间,它们在编译时被全部求值。枚举常量的缺点是:它的隐含数据类型是整数,其最大值有限,且不能表示浮点数(如PI=3.14159)。

第6章 函数设计

函数是C++/C程序的基本功能单元,其重要性不言而喻。函数设计的细微缺点很容易导致该函数被错用,所以光使函数的功能正确是不够的。本章重点论述函数的接口设计和内部实现的一些规则。
函数接口的两个要素是参数和返回值。C语言中,函数的参数和返回值的传递方式有两种:值传递(pass by value)和指针传递(pass by pointer)。C++ 语言中多了引用传递(pass by reference)。由于引用传递的性质象指针传递,而使用方式却象值传递,初学者常常迷惑不解,容易引起混乱,请先阅读6.6节“引用与指针的比较”。

6.1 参数的规则

l 【规则6-1-1】参数的书写要完整,不要贪图省事只写参数的类型而省略参数名字。如果函数没有参数,则用void填充。
例如:

void SetValue(int width, int height); // 良好的风格
void SetValue(int, int); // 不良的风格
float GetValue(void); // 良好的风格
float GetValue(); // 不良的风格

l 【规则6-1-2】参数命名要恰当,顺序要合理。
例如编写字符串拷贝函数StringCopy,它有两个参数。如果把参数名字起为str1和str2,例如

void StringCopy(char *str1, char *str2);

那么我们很难搞清楚究竟是把str1拷贝到str2中,还是刚好倒过来。
可以把参数名字起得更有意义,如叫strSource和strDestination。这样从名字上就可以看出应该把strSource拷贝到strDestination。
还有一个问题,这两个参数那一个该在前那一个该在后?参数的顺序要遵循程序员的习惯。一般地,应将目的参数放在前面,源参数放在后面。
如果将函数声明为:

void StringCopy(char *strSource, char *strDestination);

别人在使用时可能会不假思索地写成如下形式:

char str[20];
StringCopy(str, “Hello World”); // 参数顺序颠倒

l 【规则6-1-3】如果参数是指针,且仅作输入用,则应在类型前加const,以防止该指针在函数体内被意外修改。
例如:

void StringCopy(char *strDestination,const char *strSource);

l 【规则6-1-4】如果输入参数以值传递的方式传递对象,则宜改用“const &”方式来传递,这样可以省去临时对象的构造和析构过程,从而提高效率。

2 【建议6-1-1】避免函数有太多的参数,参数个数尽量控制在5个以内。如果参数太多,在使用时容易将参数类型或顺序搞错。

2 【建议6-1-2】尽量不要使用类型和数目不确定的参数。
C标准库函数printf是采用不确定参数的典型代表,其原型为:

int printf(const chat *format[, argument]…);

这种风格的函数在编译时丧失了严格的类型安全检查。

6.2 返回值的规则

l 【规则6-2-1】不要省略返回值的类型。
C语言中,凡不加类型说明的函数,一律自动按整型处理。这样做不会有什么好处,却容易被误解为void类型。
C++语言有很严格的类型安全检查,不允许上述情况发生。由于C++程序可以调用C函数,为了避免混乱,规定任何C++/ C函数都必须有类型。如果函数没有返回值,那么应声明为void类型。

l 【规则6-2-2】函数名字与返回值类型在语义上不可冲突。
违反这条规则的典型代表是C标准库函数getchar。
例如:

char c;
c = getchar();
if (c == EOF)

按照getchar名字的意思,将变量c声明为char类型是很自然的事情。但不幸的是getchar的确不是char类型,而是int类型,其原型如下:

int getchar(void);

由于c是char类型,取值范围是[-128,127],如果宏EOF的值在char的取值范围之外,那么if语句将总是失败,这种“危险”人们一般哪里料得到!导致本例错误的责任并不在用户,是函数getchar误导了使用者。
l 【规则6-2-3】不要将正常值和错误标志混在一起返回。正常值用输出参数获得,而错误标志用return语句返回。
回顾上例,C标准库函数的设计者为什么要将getchar声明为令人迷糊的int类型呢?他会那么傻吗?
在正常情况下,getchar的确返回单个字符。但如果getchar碰到文件结束标志或发生读错误,它必须返回一个标志EOF。为了区别于正常的字符,只好将EOF定义为负数(通常为负1)。因此函数getchar就成了int类型。
我们在实际工作中,经常会碰到上述令人为难的问题。为了避免出现误解,我们应该将正常值和错误标志分开。即:正常值用输出参数获得,而错误标志用return语句返回。
函数getchar可以改写成 BOOL GetChar(char *c);
虽然gechar比GetChar灵活,例如 putchar(getchar()); 但是如果getchar用错了,它的灵活性又有什么用呢?
2 【建议6-2-1】有时候函数原本不需要返回值,但为了增加灵活性如支持链式表达,可以附加返回值。
例如字符串拷贝函数strcpy的原型:

char *strcpy(char *strDest,const char *strSrc);

strcpy函数将strSrc拷贝至输出参数strDest中,同时函数的返回值又是strDest。这样做并非多此一举,可以获得如下灵活性:

char str[20];
int length = strlen( strcpy(str, “Hello World”) );

2 【建议6-2-2】如果函数的返回值是一个对象,有些场合用“引用传递”替换“值传递”可以提高效率。而有些场合只能用“值传递”而不能用“引用传递”,否则会出错。
例如:

class String
{…
// 赋值函数
String & operate=(const String &other);
// 相加函数,如果没有friend修饰则只许有一个右侧参数
friend String operate+( const String &s1, const String &s2);
private:
char *m_data;
}

String的赋值函数operate = 的实现如下:

String & String::operate=(const String &other)
{
if (this == &other)
return *this;
delete m_data;
m_data = new char[strlen(other.data)+1];
strcpy(m_data, other.data);
return *this; // 返回的是 *this的引用,无需拷贝过程
}

对于赋值函数,应当用“引用传递”的方式返回String对象。如果用“值传递”的方式,虽然功能仍然正确,但由于return语句要把 *this拷贝到保存返回值的外部存储单元之中,增加了不必要的开销,降低了赋值函数的效率。例如:

String a,b,c;
…
a = b; // 如果用“值传递”,将产生一次 *this 拷贝
a = b = c; // 如果用“值传递”,将产生两次 *this 拷贝
String的相加函数operate + 的实现如下:
String operate+(const String &s1, const String &s2)
{
String temp;
delete temp.data; // temp.data是仅含‘\0’的字符串
temp.data = new char[strlen(s1.data) + strlen(s2.data) +1];
strcpy(temp.data, s1.data);
strcat(temp.data, s2.data);
return temp;
}

对于相加函数,应当用“值传递”的方式返回String对象。如果改用“引用传递”,那么函数返回值是一个指向局部对象temp的“引用”。由于temp在函数结束时被自动销毁,将导致返回的“引用”无效。例如:

c = a + b;

此时 a + b 并不返回期望值,c什么也得不到,流下了隐患。

6.3 函数内部实现的规则

不同功能的函数其内部实现各不相同,看起来似乎无法就“内部实现”达成一致的观点。但根据经验,我们可以在函数体的“入口处”和“出口处”从严把关,从而提高函数的质量。
l 【规则6-3-1】在函数体的“入口处”,对参数的有效性进行检查。
很多程序错误是由非法参数引起的,我们应该充分理解并正确使用“断言”(assert)来防止此类错误。详见6.5节“使用断言”。
l 【规则6-3-2】在函数体的“出口处”,对return语句的正确性和效率进行检查。
如果函数有返回值,那么函数的“出口处”是return语句。我们不要轻视return语句。如果return语句写得不好,函数要么出错,要么效率低下。
注意事项如下:
(1)return语句不可返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。例如

char * Func(void)
{
char str[] = “hello world”; // str的内存位于栈上return str; // 将导致错误
}

(2)要搞清楚返回的究竟是“值”、“指针”还是“引用”。
(3)如果函数返回值是一个对象,要考虑return语句的效率。例如

return String(s1 + s2);

这是临时对象的语法,表示“创建一个临时对象并返回它”。不要以为它与“先创建一个局部对象temp并返回它的结果”是等价的,如

String temp(s1 + s2);
return temp;

实质不然,上述代码将发生三件事。首先,temp对象被创建,同时完成初始化;然后拷贝构造函数把temp拷贝到保存返回值的外部存储单元中;最后,temp在函数结束时被销毁(调用析构函数)。然而“创建一个临时对象并返回它”的过程是不同的,编译器直接把临时对象创建并初始化在外部存储单元中,省去了拷贝和析构的化费,提高了效率。
类似地,我们不要将

return int(x + y); // 创建一个临时变量并返回它
写成
int temp = x + y;
return temp;

由于内部数据类型如int,float,double的变量不存在构造函数与析构函数,虽然该“临时变量的语法”不会提高多少效率,但是程序更加简洁易读。

6.4 其它建议

2 【建议6-4-1】函数的功能要单一,不要设计多用途的函数。
2 【建议6-4-2】函数体的规模要小,尽量控制在50行代码之内。
2 【建议6-4-3】尽量避免函数带有“记忆”功能。相同的输入应当产生相同的输出。
带有“记忆”功能的函数,其行为可能是不可预测的,因为它的行为可能取决于某种“记忆状态”。这样的函数既不易理解又不利于测试和维护。在C/C++语言中,函数的static局部变量是函数的“记忆”存储器。建议尽量少用static局部变量,除非必需。
2 【建议6-4-4】不仅要检查输入参数的有效性,还要检查通过其它途径进入函数体内的变量的有效性,例如全局变量、文件句柄等。
2 【建议6-4-5】用于出错处理的返回值一定要清楚,让使用者不容易忽视或误解错误情况。

6.5 使用断言

程序一般分为Debug版本和Release版本,Debug版本用于内部调试,Release版本发行给用户使用。
断言assert是仅在Debug版本起作用的宏,它用于检查“不应该”发生的情况。示例6-5是一个内存复制函数。在运行过程中,如果assert的参数为假,那么程序就会中止(一般地还会出现提示对话,说明在什么地方引发了assert)。

void *memcpy(void *pvTo, const void *pvFrom, size_t size)
{
assert((pvTo != NULL) && (pvFrom != NULL)); // 使用断言
byte *pbTo = (byte *) pvTo; // 防止改变pvTo的地址
byte *pbFrom = (byte *) pvFrom; // 防止改变pvFrom的地址
while(size -- > 0 )
*pbTo ++ = *pbFrom ++ ;
return pvTo;
}

示例6-5 复制不重叠的内存块
assert不是一个仓促拼凑起来的宏。为了不在程序的Debug版本和Release版本引起差别,assert不应该产生任何副作用。所以assert不是函数,而是宏。程序员可以把assert看成一个在任何系统状态下都可以安全使用的无害测试手段。如果程序在assert处终止了,并不是说含有该assert的函数有错误,而是调用者出了差错,assert可以帮助我们找到发生错误的原因。
很少有比跟踪到程序的断言,却不知道该断言的作用更让人沮丧的事了。你化了很多时间,不是为了排除错误,而只是为了弄清楚这个错误到底是什么。有的时候,程序员偶尔还会设计出有错误的断言。所以如果搞不清楚断言检查的是什么,就很难判断错误是出现在程序中,还是出现在断言中。幸运的是这个问题很好解决,只要加上清晰的注释即可。

第7章 内存管理

欢迎进入内存这片雷区。伟大的Bill Gates 曾经失言:
640K ought to be enough for everybody
— Bill Gates 1981
程序员们经常编写内存管理程序,往往提心吊胆。如果不想触雷,唯一的解决办法就是发现所有潜伏的地雷并且排除它们,躲是躲不了的。本章的内容比一般教科书的要深入得多,读者需细心阅读,做到真正地通晓内存管理。

7.1内存分配方式

内存分配方式有三种:
(1) 从静态存储区域分配。内存在程序编译的时候就已经分配好,这块内存在程序的整个运行期间都存在。例如全局变量,static变量。
(2) 在栈上创建。在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是分配的内存容量有限。
(3) 从堆上分配,亦称动态内存分配。程序在运行的时候用malloc或new申请任意多少的内存,程序员自己负责在何时用free或delete释放内存。动态内存的生存期由我们决定,使用非常灵活,但问题也最多。

7.2常见的内存错误及其对策

发生内存错误是件非常麻烦的事情。编译器不能自动发现这些错误,通常是在程序运行时才能捕捉到。而这些错误大多没有明显的症状,时隐时现,增加了改错的难度。有时用户怒气冲冲地把你找来,程序却没有发生任何问题,你一走,错误又发作了。
常见的内存错误及其对策如下:
u 内存分配未成功,却使用了它。
编程新手常犯这种错误,因为他们没有意识到内存分配会不成功。常用解决办法是,在使用内存之前检查指针是否为NULL。如果指针p是函数的参数,那么在函数的入口处用assert(p!=NULL)进行检查。如果是用malloc或new来申请内存,应该用if(p==NULL) 或if(p!=NULL)进行防错处理。

u 内存分配虽然成功,但是尚未初始化就引用它。
犯这种错误主要有两个起因:一是没有初始化的观念;二是误以为内存的缺省初值全为零,导致引用初值错误(例如数组)。
内存的缺省初值究竟是什么并没有统一的标准,尽管有些时候为零值,我们宁可信其无不可信其有。所以无论用何种方式创建数组,都别忘了赋初值,即便是赋零值也不可省略,不要嫌麻烦。

u 内存分配成功并且已经初始化,但操作越过了内存的边界。
例如在使用数组时经常发生下标“多1”或者“少1”的操作。特别是在for循环语句中,循环次数很容易搞错,导致数组操作越界。

u 忘记了释放内存,造成内存泄露。
含有这种错误的函数每被调用一次就丢失一块内存。刚开始时系统的内存充足,你看不到错误。终有一次程序突然死掉,系统出现提示:内存耗尽。
动态内存的申请与释放必须配对,程序中malloc与free的使用次数一定要相同,否则肯定有错误(new/delete同理)。

u 释放了内存却继续使用它。
有三种情况:
(1)程序中的对象调用关系过于复杂,实在难以搞清楚某个对象究竟是否已经释放了内存,此时应该重新设计数据结构,从根本上解决对象管理的混乱局面。
(2)函数的return语句写错了,注意不要返回指向“栈内存”的“指针”或者“引用”,因为该内存在函数体结束时被自动销毁。
(3)使用free或delete释放了内存后,没有将指针设置为NULL。导致产生“野指针”。

l 【规则7-2-1】用malloc或new申请内存之后,应该立即检查指针值是否为NULL。防止使用指针值为NULL的内存。
l 【规则7-2-2】不要忘记为数组和动态内存赋初值。防止将未被初始化的内存作为右值使用。
l 【规则7-2-3】避免数组或指针的下标越界,特别要当心发生“多1”或者“少1”操作。
l 【规则7-2-4】动态内存的申请与释放必须配对,防止内存泄漏。
l 【规则7-2-5】用free或delete释放了内存之后,立即将指针设置为NULL,防止产生“野指针”。

7.3指针与数组的对比

C++/C程序中,指针和数组在不少地方可以相互替换着用,让人产生一种错觉,以为两者是等价的。
数组要么在静态存储区被创建(如全局数组),要么在栈上被创建。数组名对应着(而不是指向)一块内存,其地址与容量在生命期内保持不变,只有数组的内容可以改变。
指针可以随时指向任意类型的内存块,它的特征是“可变”,所以我们常用指针来操作动态内存。指针远比数组灵活,但也更危险。
下面以字符串为例比较指针与数组的特性。

7.3.1 修改内容
示例7-3-1中,字符数组a的容量是6个字符,其内容为hello\0。a的内容可以改变,如a[0]= ‘X’。指针p指向常量字符串“world”(位于静态存储区,内容为world\0),常量字符串的内容是不可以被修改的。从语法上看,编译器并不觉得语句p[0]= ‘X’有什么不妥,但是该语句企图修改常量字符串的内容而导致运行错误。

char a[] = “hello”;
a[0] = ‘X’;
cout << a << endl;
char *p = “world”; // 注意p指向常量字符串
p[0] = ‘X’; // 编译器不能发现该错误
cout << p << endl;

示例7-3-1 修改数组和指针的内容

7.3.2 内容复制与比较
不能对数组名进行直接复制与比较。示例7-3-2中,若想把数组a的内容复制给数组b,不能用语句 b = a ,否则将产生编译错误。应该用标准库函数strcpy进行复制。同理,比较b和a的内容是否相同,不能用if(b==a) 来判断,应该用标准库函数strcmp进行比较。
语句p = a 并不能把a的内容复制指针p,而是把a的地址赋给了p。要想复制a的内容,可以先用库函数malloc为p申请一块容量为strlen(a)+1个字符的内存,再用strcpy进行字符串复制。同理,语句if(p==a) 比较的不是内容而是地址,应该用库函数strcmp来比较。

// 数组…
char a[] = "hello";
char b[10];
strcpy(b, a); // 不能用 b = a;
if(strcmp(b, a) == 0) // 不能用 if (b == a)// 指针…
int len = strlen(a);
char *p = (char *)malloc(sizeof(char)*(len+1));
strcpy(p,a); // 不要用 p = a;
if(strcmp(p, a) == 0) // 不要用 if (p == a)

示例7-3-2 数组和指针的内容复制与比较

7.3.3 计算内存容量
用运算符sizeof可以计算出数组的容量(字节数)。示例7-3-3(a)中,sizeof(a)的值是12(注意别忘了’\0’)。指针p指向a,但是sizeof(p)的值却是4。这是因为sizeof(p)得到的是一个指针变量的字节数,相当于sizeof(char*),而不是p所指的内存容量。C++/C语言没有办法知道指针所指的内存容量,除非在申请内存时记住它。
注意当数组作为函数的参数进行传递时,该数组自动退化为同类型的指针。示例7-3-3(b)中,不论数组a的容量是多少,sizeof(a)始终等于sizeof(char *)。

char a[] = "hello world";
char *p = a;
cout<< sizeof(a) << endl; // 12字节
cout<< sizeof(p) << endl; // 4字节
示例7-3-3(a) 计算数组和指针的内存容量
void Func(char a[100])
{
cout<< sizeof(a) << endl; // 4字节而不是100字节
}

示例7-3-3(b) 数组退化为指针

7.4指针参数是如何传递内存的?

如果函数的参数是一个指针,不要指望用该指针去申请动态内存。示例7-4-1中,Test函数的语句GetMemory(str, 200)并没有使str获得期望的内存,str依旧是NULL,为什么?

void GetMemory(char *p, int num)
{
p = (char *)malloc(sizeof(char) * num);
}

void Test(void)
{
char *str = NULL;
GetMemory(str, 100); // str 仍然为 NULL
strcpy(str, "hello"); // 运行错误
}

示例7-4-1 试图用指针参数申请动态内存
毛病出在函数GetMemory中。编译器总是要为函数的每个参数制作临时副本,指针参数p的副本是 _p,编译器使 _p = p。如果函数体内的程序修改了_p的内容,就导致参数p的内容作相应的修改。这就是指针可以用作输出参数的原因。在本例中,_p申请了新的内存,只是把_p所指的内存地址改变了,但是p丝毫未变。所以函数GetMemory并不能输出任何东西。事实上,每执行一次GetMemory就会泄露一块内存,因为没有用free释放内存。
如果非得要用指针参数去申请内存,那么应该改用“指向指针的指针”,见示例7-4-2。

void GetMemory2(char **p, int num)
{
*p = (char *)malloc(sizeof(char) * num);
}

void Test2(void)
{
char *str = NULL;
GetMemory2(&str, 100); // 注意参数是 &str,而不是str
strcpy(str, "hello");
cout<< str << endl;
free(str);
}

示例7-4-2用指向指针的指针申请动态内存
由于“指向指针的指针”这个概念不容易理解,我们可以用函数返回值来传递动态内存。这种方法更加简单,见示例7-4-3。

char *GetMemory3(int num)
{
char *p = (char *)malloc(sizeof(char) * num);
return p;
}

void Test3(void)
{
char *str = NULL;
str = GetMemory3(100);
strcpy(str, "hello");
cout<< str << endl;
free(str);
}

示例7-4-3 用函数返回值来传递动态内存
用函数返回值来传递动态内存这种方法虽然好用,但是常常有人把return语句用错了。这里强调不要用return语句返回指向“栈内存”的指针,因为该内存在函数结束时自动消亡,见示例7-4-4。

char *GetString(void)
{
char p[] = "hello world";
return p; // 编译器将提出警告
}

void Test4(void)
{
char *str = NULL;
str = GetString(); // str 的内容是垃圾
cout<< str << endl;
}

示例7-4-4 return语句返回指向“栈内存”的指针
用调试器逐步跟踪Test4,发现执行str = GetString语句后str不再是NULL指针,但是str的内容不是“hello world”而是垃圾。
如果把示例7-4-4改写成示例7-4-5,会怎么样?

char *GetString2(void)
{
char *p = "hello world";
return p;
}

void Test5(void)
{
char *str = NULL;
str = GetString2();
cout<< str << endl;
}

示例7-4-5 return语句返回常量字符串
函数Test5运行虽然不会出错,但是函数GetString2的设计概念却是错误的。因为GetString2内的“hello world”是常量字符串,位于静态存储区,它在程序生命期内恒定不变。无论什么时候调用GetString2,它返回的始终是同一个“只读”的内存块。

7.5 杜绝“野指针”

“野指针”不是NULL指针,是指向“垃圾”内存的指针。人们一般不会错用NULL指针,因为用if语句很容易判断。但是“野指针”是很危险的,if语句对它不起作用。
“野指针”的成因主要有两种:
(1)指针变量没有被初始化。任何指针变量刚被创建时不会自动成为NULL指针,它的缺省值是随机的,它会乱指一气。所以,指针变量在创建的同时应当被初始化,要么将指针设置为NULL,要么让它指向合法的内存。例如

char *p = NULL;
char *str = (char *) malloc(100);

(2)指针p被free或者delete之后,没有置为NULL,让人误以为p是个合法的指针。参见7.5节。
(3)指针操作超越了变量的作用范围。这种情况让人防不胜防,示例程序如下:

class A
{
public:
void Func(void){ cout << “Func of class A” << endl; }
};
void Test(void)
{
A *p;
{
A a;
p = &a; // 注意 a 的生命期
}
p->Func(); // p是“野指针”
}

函数Test在执行语句p->Func()时,对象a已经消失,而p是指向a的,所以p就成了“野指针”。但奇怪的是我运行这个程序时居然没有出错,这可能与编译器有关。

7.6 有了malloc/free为什么还要new/delete ?

malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。
对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
我们先看一看malloc/free和new/delete如何实现对象的动态内存管理,见示例7-8。

class Obj
{
public :
Obj(void){ cout << “Initialization” << endl; }
~Obj(void){ cout << “Destroy” << endl; }
void Initialize(void){ cout << “Initialization” << endl; }
void Destroy(void){ cout << “Destroy” << endl; }
};

void UseMallocFree(void)
{
Obj *a = (obj *)malloc(sizeof(obj)); // 申请动态内存
a->Initialize(); // 初始化
//…
a->Destroy(); // 清除工作
free(a); // 释放内存
}

void UseNewDelete(void)
{
Obj *a = new Obj; // 申请动态内存并且初始化
//…
delete a; // 清除并且释放内存
}

示例7-8 用malloc/free和new/delete如何实现对象的动态内存管理
类Obj的函数Initialize模拟了构造函数的功能,函数Destroy模拟了析构函数的功能。函数UseMallocFree中,由于malloc/free不能执行构造函数与析构函数,必须调用成员函数Initialize和Destroy来完成初始化与清除工作。函数UseNewDelete则简单得多。
所以我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。
既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,理论上讲程序不会出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

7.7 内存耗尽怎么办?

如果在申请动态内存时找不到足够大的内存块,malloc和new将返回NULL指针,宣告内存申请失败。通常有三种方式处理“内存耗尽”问题。
(1)判断指针是否为NULL,如果是则马上用return语句终止本函数。例如:

void Func(void)
{
A *a = new A;
if(a == NULL)
{
return;
}
…
}

(2)判断指针是否为NULL,如果是则马上用exit(1)终止整个程序的运行。例如:

void Func(void)
{
A *a = new A;
if(a == NULL)
{
cout << “Memory Exhausted” << endl;
exit(1);
}
…
}

(3)为new和malloc设置异常处理函数。例如Visual C++可以用_set_new_hander函数为new设置用户自己定义的异常处理函数,也可以让malloc享用与new相同的异常处理函数。详细内容请参考C++使用手册。
上述(1)(2)方式使用最普遍。如果一个函数内有多处需要申请动态内存,那么方式(1)就显得力不从心(释放内存很麻烦),应该用方式(2)来处理。
很多人不忍心用exit(1),问:“不编写出错处理程序,让操作系统自己解决行不行?”
不行。如果发生“内存耗尽”这样的事情,一般说来应用程序已经无药可救。如果不用exit(1) 把坏程序杀死,它可能会害死操作系统。道理如同:如果不把歹徒击毙,歹徒在老死之前会犯下更多的罪。
有一个很重要的现象要告诉大家。对于32位以上的应用程序而言,无论怎样使用malloc与new,几乎不可能导致“内存耗尽”。我在Windows 98下用Visual C++编写了测试程序,见示例7-9。这个程序会无休止地运行下去,根本不会终止。因为32位操作系统支持“虚存”,内存用完了,自动用硬盘空间顶替。我只听到硬盘嘎吱嘎吱地响,Window 98已经累得对键盘、鼠标毫无反应。
我可以得出这么一个结论:对于32位以上的应用程序,“内存耗尽”错误处理程序毫无用处。这下可把Unix和Windows程序员们乐坏了:反正错误处理程序不起作用,我就不写了,省了很多麻烦。
我不想误导读者,必须强调:不加错误处理将导致程序的质量很差,千万不可因小失大。

void main(void)
{
float *p = NULL;
while(TRUE)
{
p = new float[1000000];
cout << “eat memory” << endl;
if(p==NULL)
exit(1);
}
}

示例7-9试图耗尽操作系统的内存

7.8 malloc/free 的使用要点

函数malloc的原型如下:

void * malloc(size_t size);

用malloc申请一块长度为length的整数类型的内存,程序如下:

int *p = (int *) malloc(sizeof(int) * length);

我们应当把注意力集中在两个要素上:“类型转换”和“sizeof”。
u malloc返回值的类型是void ,所以在调用malloc时要显式地进行类型转换,将void 转换成所需要的指针类型。
u malloc函数本身并不识别要申请的内存是什么类型,它只关心内存的总字节数。我们通常记不住int, float等数据类型的变量的确切字节数。例如int变量在16位系统下是2个字节,在32位下是4个字节;而float变量在16位系统下是4个字节,在32位下也是4个字节。最好用以下程序作一次测试:

cout << sizeof(char) << endl;
cout << sizeof(int) << endl;
cout << sizeof(unsigned int) << endl;
cout << sizeof(long) << endl;
cout << sizeof(unsigned long) << endl;
cout << sizeof(float) << endl;
cout << sizeof(double) << endl;
cout << sizeof(void *) << endl;

在malloc的“()”中使用sizeof运算符是良好的风格,但要当心有时我们会昏了头,写出 p = malloc(sizeof(p))这样的程序来。
u 函数free的原型如下:

void free( void * memblock );

为什么free函数不象malloc函数那样复杂呢?这是因为指针p的类型以及它所指的内存的容量事先都是知道的,语句free(p)能正确地释放内存。如果p是NULL指针,那么free对p无论操作多少次都不会出问题。如果p不是NULL指针,那么free对p连续操作两次就会导致程序运行错误。

7.9 new/delete 的使用要点

运算符new使用起来要比函数malloc简单得多,例如:

int *p1 = (int *)malloc(sizeof(int) * length);
int *p2 = new int[length];

这是因为new内置了sizeof、类型转换和类型安全检查功能。对于非内部数据类型的对象而言,new在创建动态对象的同时完成了初始化工作。如果对象有多个构造函数,那么new的语句也可以有多种形式。例如

class Obj
{
public :
Obj(void); // 无参数的构造函数
Obj(int x); // 带一个参数的构造函数
…
}
void Test(void)
{
Obj *a = new Obj;
Obj *b = new Obj(1); // 初值为1delete a;
delete b;
}

如果用new创建对象数组,那么只能使用对象的无参数构造函数。例如

Obj *objects = new Obj[100]; // 创建100个动态对象
不能写成
Obj *objects = new Obj[100](1);// 创建100个动态对象的同时赋初值1

在用delete释放对象数组时,留意不要丢了符号‘[]’。例如

delete []objects; // 正确的用法
delete objects; // 错误的用法

后者相当于delete objects[0],漏掉了另外99个对象。

7.10 一些心得体会

我认识不少技术不错的C++/C程序员,很少有人能拍拍胸脯说通晓指针与内存管理(包括我自己)。我最初学习C语言时特别怕指针,导致我开发第一个应用软件(约1万行C代码)时没有使用一个指针,全用数组来顶替指针,实在蠢笨得过分。躲避指针不是办法,后来我改写了这个软件,代码量缩小到原先的一半。
我的经验教训是:
(1)越是怕指针,就越要使用指针。不会正确使用指针,肯定算不上是合格的程序员。
(2)必须养成“使用调试器逐步跟踪程序”的习惯,只有这样才能发现问题的本质。

第8章 C++函数的高级特性

对比于C语言的函数,C++增加了重载(overloaded)、内联(inline)、const和virtual四种新机制。其中重载和内联机制既可用于全局函数也可用于类的成员函数,const与virtual机制仅用于类的成员函数。
重载和内联肯定有其好处才会被C++语言采纳,但是不可以当成免费的午餐而滥用。本章将探究重载和内联的优点与局限性,说明什么情况下应该采用、不该采用以及要警惕错用。

8.1 函数重载的概念

8.1.1 重载的起源
自然语言中,一个词可以有许多不同的含义,即该词被重载了。人们可以通过上下文来判断该词到底是哪种含义。“词的重载”可以使语言更加简练。例如“吃饭”的含义十分广泛,人们没有必要每次非得说清楚具体吃什么不可。别迂腐得象孔已己,说茴香豆的茴字有四种写法。
在C++程序中,可以将语义、功能相似的几个函数用同一个名字表示,即函数重载。这样便于记忆,提高了函数的易用性,这是C++语言采用重载机制的一个理由。例如示例8-1-1中的函数EatBeef,EatFish,EatChicken可以用同一个函数名Eat表示,用不同类型的参数加以区别。

void EatBeef(…); // 可以改为 void Eat(Beef …);
void EatFish(…); // 可以改为 void Eat(Fish …);
void EatChicken(…); // 可以改为 void Eat(Chicken …);

示例8-1-1 重载函数Eat
C++语言采用重载机制的另一个理由是:类的构造函数需要重载机制。因为C++规定构造函数与类同名(请参见第9章),构造函数只能有一个名字。如果想用几种不同的方法创建对象该怎么办?别无选择,只能用重载机制来实现。所以类可以有多个同名的构造函数。
8.1.2 重载是如何实现的?
几个同名的重载函数仍然是不同的函数,它们是如何区分的呢?我们自然想到函数接口的两个要素:参数与返回值。
如果同名函数的参数不同(包括类型、顺序不同),那么容易区别出它们是不同的函数。
如果同名函数仅仅是返回值类型不同,有时可以区分,有时却不能。例如:

void Function(void);
int Function (void);

上述两个函数,第一个没有返回值,第二个的返回值是int类型。如果这样调用函数:

int x = Function ();

则可以判断出Function是第二个函数。问题是在C++/C程序中,我们可以忽略函数的返回值。在这种情况下,编译器和程序员都不知道哪个Function函数被调用。
所以只能靠参数而不能靠返回值类型的不同来区分重载函数。编译器根据参数为每个重载函数产生不同的内部标识符。例如编译器为示例8-1-1中的三个Eat函数产生象_eat_beef、_eat_fish、_eat_chicken之类的内部标识符(不同的编译器可能产生不同风格的内部标识符)。
如果C++程序要调用已经被编译后的C函数,该怎么办?
假设某个C函数的声明如下:

void foo(int x, int y);

该函数被C编译器编译后在库中的名字为_foo,而C++编译器则会产生像_foo_int_int之类的名字用来支持函数重载和类型安全连接。由于编译后的名字不同,C++程序不能直接调用C函数。C++提供了一个C连接交换指定符号extern“C”来解决这个问题。例如:

extern “C”
{
void foo(int x, int y);
… // 其它函数
}

或者写成

extern “C”
{
#include “myheader.h”// 其它C头文件
}

这就告诉C++编译译器,函数foo是个C连接,应该到库中找名字_foo而不是找_foo_int_int。C++编译器开发商已经对C标准库的头文件作了extern“C”处理,所以我们可以用#include 直接引用这些头文件。
注意并不是两个函数的名字相同就能构成重载。全局函数和类的成员函数同名不算重载,因为函数的作用域不同。例如:

void Print(…); // 全局函数
class A
{…
void Print(…); // 成员函数
}

不论两个Print函数的参数是否不同,如果类的某个成员函数要调用全局函数Print,为了与成员函数Print区别,全局函数被调用时应加‘::’标志。如

::Print(…); // 表示Print是全局函数而非成员函数

8.1.3 当心隐式类型转换导致重载函数产生二义性
示例8-1-3中,第一个output函数的参数是int类型,第二个output函数的参数是float类型。由于数字本身没有类型,将数字当作参数时将自动进行类型转换(称为隐式类型转换)。语句output(0.5)将产生编译错误,因为编译器不知道该将0.5转换成int还是float类型的参数。隐式类型转换在很多地方可以简化程序的书写,但是也可能留下隐患。

# include <iostream.h>
void output( int x); // 函数声明
void output( float x); // 函数声明
void output( int x)
{
cout << " output int " << x << endl ;
}
void output( float x)
{
cout << " output float " << x << endl ;
}
void main(void)
{
int x = 1;
float y = 1.0;
output(x); // output int 1
output(y); // output float 1
output(1); // output int 1
// output(0.5); // error! ambiguous call, 因为自动类型转换
output(int(0.5)); // output int 0
output(float(0.5)); // output float 0.5
}

示例8-1-3 隐式类型转换导致重载函数产生二义性

8.2 成员函数的重载、覆盖与隐藏

成员函数的重载、覆盖(override)与隐藏很容易混淆,C++程序员必须要搞清楚概念,否则错误将防不胜防。
8.2.1 重载与覆盖
成员函数被重载的特征:
(1)相同的范围(在同一个类中);
(2)函数名字相同;
(3)参数不同;
(4)virtual关键字可有可无。
覆盖是指派生类函数覆盖基类函数,特征是:
(1)不同的范围(分别位于派生类与基类);
(2)函数名字相同;
(3)参数相同;
(4)基类函数必须有virtual关键字。
示例8-2-1中,函数Base::f(int)与Base::f(float)相互重载,而Base::g(void)被Derived::g(void)覆盖。

#include <iostream.h>
class Base
{
public:
void f(int x){ cout << "Base::f(int) " << x << endl; }
void f(float x){ cout << "Base::f(float) " << x << endl; }
virtual void g(void){ cout << "Base::g(void)" << endl;}
};


class Derived : public Base
{
public:
virtual void g(void){ cout << "Derived::g(void)" << endl;}
};


void main(void)
{
Derived d;
Base *pb = &d;
pb->f(42); // Base::f(int) 42
pb->f(3.14f); // Base::f(float) 3.14
pb->g(); // Derived::g(void)
}

示例8-2-1成员函数的重载和覆盖
8.2.2 令人迷惑的隐藏规则
本来仅仅区别重载与覆盖并不算困难,但是C++的隐藏规则使问题复杂性陡然增加。这里“隐藏”是指派生类的函数屏蔽了与其同名的基类函数,规则如下:
(1)如果派生类的函数与基类的函数同名,但是参数不同。此时,不论有无virtual关键字,基类的函数将被隐藏(注意别与重载混淆)。
(2)如果派生类的函数与基类的函数同名,并且参数也相同,但是基类函数没有virtual关键字。此时,基类的函数被隐藏(注意别与覆盖混淆)。
示例程序8-2-2(a)中:
(1)函数Derived::f(float)覆盖了Base::f(float)。
(2)函数Derived::g(int)隐藏了Base::g(float),而不是重载。
(3)函数Derived::h(float)隐藏了Base::h(float),而不是覆盖。

#include <iostream.h>
class Base
{
public:
virtual void f(float x){ cout << "Base::f(float) " << x << endl; }
void g(float x){ cout << "Base::g(float) " << x << endl; }
void h(float x){ cout << "Base::h(float) " << x << endl; }
};

class Derived : public Base
{
public:
virtual void f(float x){ cout << "Derived::f(float) " << x << endl; }
void g(int x){ cout << "Derived::g(int) " << x << endl; }
void h(float x){ cout << "Derived::h(float) " << x << endl; }
};

示例8-2-2(a)成员函数的重载、覆盖和隐藏
据作者考察,很多C++程序员没有意识到有“隐藏”这回事。由于认识不够深刻,“隐藏”的发生可谓神出鬼没,常常产生令人迷惑的结果。
示例8-2-2(b)中,bp和dp指向同一地址,按理说运行结果应该是相同的,可事实并非这样。

void main(void)
{
Derived d;
Base *pb = &d;
Derived *pd = &d;
// Good : behavior depends solely on type of the object
pb->f(3.14f); // Derived::f(float) 3.14
pd->f(3.14f); // Derived::f(float) 3.14
// Bad : behavior depends on type of the pointer
pb->g(3.14f); // Base::g(float) 3.14
pd->g(3.14f); // Derived::g(int) 3 (surprise!)
// Bad : behavior depends on type of the pointer
pb->h(3.14f); // Base::h(float) 3.14 (surprise!)
pd->h(3.14f); // Derived::h(float) 3.14
}

示例8-2-2(b) 重载、覆盖和隐藏的比较
8.2.3 摆脱隐藏
隐藏规则引起了不少麻烦。示例8-2-3程序中,语句pd->f(10)的本意是想调用函数Base::f(int),但是Base::f(int)不幸被Derived::f(char *)隐藏了。由于数字10不能被隐式地转化为字符串,所以在编译时出错。

class Base
{
public:
void f(int x);
};

class Derived : public Base
{
public:
void f(char *str);
};

void Test(void)
{
Derived *pd = new Derived;
pd->f(10); // error
}

示例8-2-3 由于隐藏而导致错误
从示例8-2-3看来,隐藏规则似乎很愚蠢。但是隐藏规则至少有两个存在的理由:
u 写语句pd->f(10)的人可能真的想调用Derived::f(char *)函数,只是他误将参数写错了。有了隐藏规则,编译器就可以明确指出错误,这未必不是好事。否则,编译器会静悄悄地将错就错,程序员将很难发现这个错误,流下祸根。
u 假如类Derived有多个基类(多重继承),有时搞不清楚哪些基类定义了函数f。如果没有隐藏规则,那么pd->f(10)可能会调用一个出乎意料的基类函数f。尽管隐藏规则看起来不怎么有道理,但它的确能消灭这些意外。
示例8-2-3中,如果语句pd->f(10)一定要调用函数Base::f(int),那么将类Derived修改为如下即可。

class Derived : public Base
{
public:
void f(char *str);
void f(int x) { Base::f(x); }
};

8.3 参数的缺省值

有一些参数的值在每次函数调用时都相同,书写这样的语句会使人厌烦。C++语言采用参数的缺省值使书写变得简洁(在编译时,缺省值由编译器自动插入)。
参数缺省值的使用规则:
l 【规则8-3-1】参数缺省值只能出现在函数的声明中,而不能出现在定义体中。
例如:

void Foo(int x=0, int y=0); // 正确,缺省值出现在函数的声明中
void Foo(int x=0, int y=0) // 错误,缺省值出现在函数的定义体中
{
…
}

为什么会这样?我想是有两个原因:一是函数的实现(定义)本来就与参数是否有缺省值无关,所以没有必要让缺省值出现在函数的定义体中。二是参数的缺省值可能会改动,显然修改函数的声明比修改函数的定义要方便。
l 【规则8-3-2】如果函数有多个参数,参数只能从后向前挨个儿缺省,否则将导致函数调用语句怪模怪样。
正确的示例如下:

void Foo(int x, int y=0, int z=0);

错误的示例如下:

void Foo(int x=0, int y, int z=0);

要注意,使用参数的缺省值并没有赋予函数新的功能,仅仅是使书写变得简洁一些。它可能会提高函数的易用性,但是也可能会降低函数的可理解性。所以我们只能适当地使用参数的缺省值,要防止使用不当产生负面效果。示例8-3-2中,不合理地使用参数的缺省值将导致重载函数output产生二义性。

#include <iostream.h>
void output( int x);
void output( int x, float y=0.0);


void output( int x)
{
cout << " output int " << x << endl ;
}


void output( int x, float y)
{
cout << " output int " << x << " and float " << y << endl ;
}


void main(void)
{
int x=1;
float y=0.5;
// output(x); // error! ambiguous call
output(x,y); // output int 1 and float 0.5
}

示例8-3-2 参数的缺省值将导致重载函数产生二义性

8.4 运算符重载

8.4.1 概念
在C++语言中,可以用关键字operator加上运算符来表示函数,叫做运算符重载。例如两个复数相加函数:

Complex Add(const Complex &a, const Complex &b);

可以用运算符重载来表示:

Complex operator +(const Complex &a, const Complex &b);

运算符与普通函数在调用时的不同之处是:对于普通函数,参数出现在圆括号内;而对于运算符,参数出现在其左、右侧。例如

Complex a, b, c;
…
c = Add(a, b); // 用普通函数
c = a + b; // 用运算符 +

如果运算符被重载为全局函数,那么只有一个参数的运算符叫做一元运算符,有两个参数的运算符叫做二元运算符。
如果运算符被重载为类的成员函数,那么一元运算符没有参数,二元运算符只有一个右侧参数,因为对象自己成了左侧参数。
从语法上讲,运算符既可以定义为全局函数,也可以定义为成员函数。文献[Murray , p44-p47]对此问题作了较多的阐述,并总结了表8-4-1的规则。
运算符
规则

所有的一元运算符
建议重载为成员函数

= () [] ->
只能重载为成员函数

+= -= /= *= &= |= ~= %= >>= <<=
建议重载为成员函数

所有其它运算符
建议重载为全局函数
表8-4-1 运算符的重载规则

第9章 类的构造函数、析构函数与赋值函数

构造函数、析构函数与赋值函数是每个类最基本的函数。它们太普通以致让人容易麻痹大意,其实这些貌似简单的函数就象没有顶盖的下水道那样危险。
每个类只有一个析构函数和一个赋值函数,但可以有多个构造函数(包含一个拷贝构造函数,其它的称为普通构造函数)。对于任意一个类A,如果不想编写上述函数,C++编译器将自动为A产生四个缺省的函数,如

A(void); // 缺省的无参数构造函数
A(const A &a); // 缺省的拷贝构造函数
~A(void); // 缺省的析构函数
A & operate =(const A &a); // 缺省的赋值函数

这不禁让人疑惑,既然能自动生成函数,为什么还要程序员编写?
原因如下:
(1)如果使用“缺省的无参数构造函数”和“缺省的析构函数”,等于放弃了自主“初始化”和“清除”的机会,C++发明人Stroustrup的好心好意白费了。
(2)“缺省的拷贝构造函数”和“缺省的赋值函数”均采用“位拷贝”而非“值拷贝”的方式来实现,倘若类中含有指针变量,这两个函数注定将出错。
对于那些没有吃够苦头的C++程序员,如果他说编写构造函数、析构函数与赋值函数很容易,可以不用动脑筋,表明他的认识还比较肤浅,水平有待于提高。
本章以类String的设计与实现为例,深入阐述被很多教科书忽视了的道理。String的结构如下:

class String
{
public:
String(const char *str = NULL); // 普通构造函数
String(const String &other); // 拷贝构造函数
~ String(void); // 析构函数
String & operate =(const String &other); // 赋值函数
private:
char *m_data; // 用于保存字符串
};

9.1 构造函数与析构函数的起源

作为比C更先进的语言,C++提供了更好的机制来增强程序的安全性。C++编译器具有严格的类型安全检查功能,它几乎能找出程序中所有的语法问题,这的确帮了程序员的大忙。但是程序通过了编译检查并不表示错误已经不存在了,在“错误”的大家庭里,“语法错误”的地位只能算是小弟弟。级别高的错误通常隐藏得很深,就象狡猾的罪犯,想逮住他可不容易。
根据经验,不少难以察觉的程序错误是由于变量没有被正确初始化或清除造成的,而初始化和清除工作很容易被人遗忘。Stroustrup在设计C++语言时充分考虑了这个问题并很好地予以解决:把对象的初始化工作放在构造函数中,把清除工作放在析构函数中。当对象被创建时,构造函数被自动执行。当对象消亡时,析构函数被自动执行。这下就不用担心忘了对象的初始化和清除工作。
构造函数与析构函数的名字不能随便起,必须让编译器认得出才可以被自动执行。Stroustrup的命名方法既简单又合理:让构造函数、析构函数与类同名,由于析构函数的目的与构造函数的相反,就加前缀‘~’以示区别。
除了名字外,构造函数与析构函数的另一个特别之处是没有返回值类型,这与返回值类型为void的函数不同。构造函数与析构函数的使命非常明确,就象出生与死亡,光溜溜地来光溜溜地去。如果它们有返回值类型,那么编译器将不知所措。为了防止节外生枝,干脆规定没有返回值类型。(以上典故参考了文献[Eekel, p55-p56])

9.2 构造函数的初始化表

构造函数有个特殊的初始化方式叫“初始化表达式表”(简称初始化表)。初始化表位于函数参数表之后,却在函数体 {} 之前。这说明该表里的初始化工作发生在函数体内的任何代码被执行之前。
构造函数初始化表的使用规则:
u 如果类存在继承关系,派生类必须在其初始化表里调用基类的构造函数。
例如

class A
{…
A(int x); // A的构造函数
};
class B : public A
{…
B(int x, int y);// B的构造函数
};
B::B(int x, int y)
: A(x) // 在初始化表里调用A的构造函数
{
…
}

u 类的const常量只能在初始化表里被初始化,因为它不能在函数体内用赋值的方式来初始化(参见5.4节)。
u 类的数据成员的初始化可以采用初始化表或函数体内赋值两种方式,这两种方式的效率不完全相同。
非内部数据类型的成员对象应当采用第一种方式初始化,以获取更高的效率。例如

class A
{…
A(void); // 无参数构造函数
A(const A &other); // 拷贝构造函数
A & operate =( const A &other); // 赋值函数
};
class B
{
public:
B(const A &a); // B的构造函数
private:
A m_a; // 成员对象
};

示例9-2(a)中,类B的构造函数在其初始化表里调用了类A的拷贝构造函数,从而将成员对象m_a初始化。
示例9-2 (b)中,类B的构造函数在函数体内用赋值的方式将成员对象m_a初始化。我们看到的只是一条赋值语句,但实际上B的构造函数干了两件事:先暗地里创建m_a对象(调用了A的无参数构造函数),再调用类A的赋值函数,将参数a赋给m_a。

B::B(const A &a)
: m_a(a)
{
…
}
B::B(const A &a)
{
m_a = a;
…
}

示例9-2(a) 成员对象在初始化表中被初始化 示例9-2(b) 成员对象在函数体内被初始化
对于内部数据类型的数据成员而言,两种初始化方式的效率几乎没有区别,但后者的程序版式似乎更清晰些。若类F的声明如下:

class F
{
public:
F(int x, int y); // 构造函数
private:
int m_x, m_y;
int m_i, m_j;
}

示例9-2(c)中F的构造函数采用了第一种初始化方式,示例9-2(d)中F的构造函数采用了第二种初始化方式。

F::F(int x, int y)
: m_x(x), m_y(y)
{
m_i = 0;
m_j = 0;
}
F::F(int x, int y)
{
m_x = x;
m_y = y;
m_i = 0;
m_j = 0;
}

示例9-2(c) 数据成员在初始化表中被初始化 示例9-2(d) 数据成员在函数体内被初始化

9.3 构造和析构的次序

构造从类层次的最根处开始,在每一层中,首先调用基类的构造函数,然后调用成员对象的构造函数。析构则严格按照与构造相反的次序执行,该次序是唯一的,否则编译器将无法自动执行析构过程。
一个有趣的现象是,成员对象初始化的次序完全不受它们在初始化表中次序的影响,只由成员对象在类中声明的次序决定。这是因为类的声明是唯一的,而类的构造函数可以有多个,因此会有多个不同次序的初始化表。如果成员对象按照初始化表的次序进行构造,这将导致析构函数无法得到唯一的逆序。[Eckel, p260-261]
9.4 示例:类String的构造函数与析构函

// String的普通构造函数
String::String(const char *str)
{
if(str==NULL)
{
m_data = new char[1];
*m_data = ‘\0’;
}
else
{
int length = strlen(str);
m_data = new char[length+1];
strcpy(m_data, str);
}
}
// String的析构函数
String::~String(void)
{
delete [] m_data;
// 由于m_data是内部数据类型,也可以写成 delete m_data;
}

9.5 不要轻视拷贝构造函数与赋值函数

由于并非所有的对象都会使用拷贝构造函数和赋值函数,程序员可能对这两个函数有些轻视。请先记住以下的警告,在阅读正文时就会多心:
u 本章开头讲过,如果不主动编写拷贝构造函数和赋值函数,编译器将以“位拷贝”的方式自动生成缺省的函数。倘若类中含有指针变量,那么这两个缺省的函数就隐含了错误。以类String的两个对象a,b为例,假设a.m_data的内容为“hello”,b.m_data的内容为“world”。
现将a赋给b,缺省赋值函数的“位拷贝”意味着执行b.m_data = a.m_data。这将造成三个错误:一是b.m_data原有的内存没被释放,造成内存泄露;二是b.m_data和a.m_data指向同一块内存,a或b任何一方变动都会影响另一方;三是在对象被析构时,m_data被释放了两次。
u 拷贝构造函数和赋值函数非常容易混淆,常导致错写、错用。拷贝构造函数是在对象被创建时调用的,而赋值函数只能被已经存在了的对象调用。以下程序中,第三个语句和第四个语句很相似,你分得清楚哪个调用了拷贝构造函数,哪个调用了赋值函数吗?

String a(“hello”);
String b(“world”);
String c = a; // 调用了拷贝构造函数,最好写成 c(a);
c = b; // 调用了赋值函数

本例中第三个语句的风格较差,宜改写成String c(a) 以区别于第四个语句。
9.6 示例:类String的拷贝构造函数与赋值函数

// 拷贝构造函数
String::String(const String &other)
{
// 允许操作other的私有成员m_data
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
}
// 赋值函数
String & String::operate =(const String &other)
{
// (1) 检查自赋值
if(this == &other)
return *this;
// (2) 释放原有的内存资源
delete [] m_data;
// (3)分配新的内存资源,并复制内容
int length = strlen(other.m_data);
m_data = new char[length+1];
strcpy(m_data, other.m_data);
// (4)返回本对象的引用
return *this;
}

类String拷贝构造函数与普通构造函数(参见9.4节)的区别是:在函数入口处无需与NULL进行比较,这是因为“引用”不可能是NULL,而“指针”可以为NULL。
类String的赋值函数比构造函数复杂得多,分四步实现:
(1)第一步,检查自赋值。你可能会认为多此一举,难道有人会愚蠢到写出 a = a 这样的自赋值语句!的确不会。但是间接的自赋值仍有可能出现,例如

// 内容自赋值
b = a;
…
c = b;
…
a = c; 
// 地址自赋值
b = &a;
…
a = *b;

也许有人会说:“即使出现自赋值,我也可以不理睬,大不了化点时间让对象复制自己而已,反正不会出错!”
他真的说错了。看看第二步的delete,自杀后还能复制自己吗?所以,如果发现自赋值,应该马上终止函数。注意不要将检查自赋值的if语句

if(this == &other)

错写成为

if( *this == other)

(2)第二步,用delete释放原有的内存资源。如果现在不释放,以后就没机会了,将造成内存泄露。
(3)第三步,分配新的内存资源,并复制字符串。注意函数strlen返回的是有效字符串长度,不包含结束符‘\0’。函数strcpy则连‘\0’一起复制。
(4)第四步,返回本对象的引用,目的是为了实现象 a = b = c 这样的链式表达。注意不要将 return *this 错写成 return this 。那么能否写成return other 呢?效果不是一样吗?
不可以!因为我们不知道参数other的生命期。有可能other是个临时对象,在赋值结束后它马上消失,那么return other返回的将是垃圾。

9.7 偷懒的办法处理拷贝构造函数与赋值函数

如果我们实在不想编写拷贝构造函数和赋值函数,又不允许别人使用编译器生成的缺省函数,怎么办?
偷懒的办法是:只需将拷贝构造函数和赋值函数声明为私有函数,不用编写

class A
{ …
private:
A(const A &a); // 私有的拷贝构造函数
A & operate =(const A &a); // 私有的赋值函数
};

编写如下程序:

A b(a); // 调用了私有的拷贝构造函数
b = a; // 调用了私有的赋值函数

编译器将指出错误,因为外界不可以操作A的私有函数。

9.8 如何在派生类中实现类的基本函数

基类的构造函数、析构函数、赋值函数都不能被派生类继承。如果类之间存在继承关系,在编写上述基本函数时应注意以下事项:
u 派生类的构造函数应在其初始化表里调用基类的构造函数。
u 基类与派生类的析构函数应该为虚(即加virtual

第10章 类的继承与组合

对象(Object)是类(Class)的一个实例(Instance)。如果将对象比作房子,那么类就是房子的设计图纸。所以面向对象设计的重点是类的设计,而不是对象的设计。
对于C++程序而言,设计孤立的类是比较容易的,难的是正确设计基类及其派生类。本章仅仅论述“继承”(Inheritance)和“组合”(Composition)的概念。
注意,当前面向对象技术的应用热点是COM和CORBA,这些内容超出了C++教材的范畴,请阅读COM和CORBA相关论著。

10.1 继承

如果A是基类,B是A的派生类,那么B将继承A的数据和函数。例如:

class A
{
public:
void Func1(void);
void Func2(void);
};
class B : public A
{
public:
void Func3(void);
void Func4(void);
};
main()
{
B b;
b.Func1(); // B从A继承了函数Func1
b.Func2(); // B从A继承了函数Func2
b.Func3();
b.Func4();
}

这个简单的示例程序说明了一个事实:C++的“继承”特性可以提高程序的可复用性。正因为“继承”太有用、太容易用,才要防止乱用“继承”。我们应当给“继承”立一些使用规则。
l 【规则10-1-1】如果类A和类B毫不相关,不可以为了使B的功能更多些而让B继承A的功能和属性。不要觉得“白吃白不吃”,让一个好端端的健壮青年无缘无故地吃人参补身体。
l 【规则10-1-2】若在逻辑上B是A的“一种”(a kind of ),则允许B继承A的功能和属性。例如男人(Man)是人(Human)的一种,男孩(Boy)是男人的一种。那么类Man可以从类Human派生,类Boy可以从类Man派生。

class Human
{
…
};
class Man : public Human
{
…
};
class Boy : public Man
{
…
};

u 注意事项
【规则10-1-2】看起来很简单,但是实际应用时可能会有意外,继承的概念在程序世界与现实世界并不完全相同。
例如从生物学角度讲,鸵鸟(Ostrich)是鸟(Bird)的一种,按理说类Ostrich应该可以从类Bird派生。但是鸵鸟不能飞,那么Ostrich::Fly是什么东西?

class Bird
{
public:
virtual void Fly(void);
…
};
class Ostrich : public Bird
{
…
};

例如从数学角度讲,圆(Circle)是一种特殊的椭圆(Ellipse),按理说类Circle应该可以从类Ellipse派生。但是椭圆有长轴和短轴,如果圆继承了椭圆的长轴和短轴,岂非画蛇添足?
所以更加严格的继承规则应当是:若在逻辑上B是A的“一种”,并且A的所有功能和属性对B而言都有意义,则允许B继承A的功能和属性。

10.2 组合

l 【规则10-2-1】若在逻辑上A是B的“一部分”(a part of),则不允许B从A派生,而是要用A和其它东西组合出B。
例如眼(Eye)、鼻(Nose)、口(Mouth)、耳(Ear)是头(Head)的一部分,所以类Head应该由类Eye、Nose、Mouth、Ear组合而成,不是派生而成。如示例10-2-1所示。

class Eye
{
public:
void Look(void);
};
class Nose
{
public:
void Smell(void);
};

class Mouth
{
public:
void Eat(void);
};
class Ear
{
public:
void Listen(void);
};

// 正确的设计,虽然代码冗长。
class Head
{
public:
void Look(void) { m_eye.Look(); }
void Smell(void) { m_nose.Smell(); }
void Eat(void) { m_mouth.Eat(); }
void Listen(void) { m_ear.Listen(); }
private:
Eye m_eye;
Nose m_nose;
Mouth m_mouth;
Ear m_ear;
};

示例10-2-1 Head由Eye、Nose、Mouth、Ear组合而成
如果允许Head从Eye、Nose、Mouth、Ear派生而成,那么Head将自动具有Look、 Smell、Eat、Listen这些功能。示例10-2-2十分简短并且运行正确,但是这种设计方法却是不对的。
// 功能正确并且代码简洁,但是设计方法不对。

class Head : public Eye, public Nose, public Mouth, public Ear
{
};

示例10-2-2 Head从Eye、Nose、Mouth、Ear派生而成
一只公鸡使劲地追打一只刚下了蛋的母鸡,你知道为什么吗?
因为母鸡下了鸭蛋。
很多程序员经不起“继承”的诱惑而犯下设计错误。“运行正确”的程序不见得是高质量的程序,此处就是一个例证。

第11章 其它编程经验

11.1 使用const提高函数的健壮性

看到const关键字,C++程序员首先想到的可能是const常量。这可不是良好的条件反射。如果只知道用const定义常量,那么相当于把火药仅用于制作鞭炮。const更大的魅力是它可以修饰函数的参数、返回值,甚至函数的定义体。
const是constant的缩写,“恒定不变”的意思。被const修饰的东西都受到强制保护,可以预防意外的变动,能提高程序的健壮性。所以很多C++程序设计书籍建议:“Use const whenever you need”。

11.1.1 用const修饰函数的参数

如果参数作输出用,不论它是什么数据类型,也不论它采用“指针传递”还是“引用传递”,都不能加const修饰,否则该参数将失去输出功能。
const只能修饰输入参数:
u 如果输入参数采用“指针传递”,那么加const修饰可以防止意外地改动该指针,起到保护作用。
例如StringCopy函数:

void StringCopy(char *strDestination, const char *strSource);

其中strSource是输入参数,strDestination是输出参数。给strSource加上const修饰后,如果函数体内的语句试图改动strSource的内容,编译器将指出错误。
u 如果输入参数采用“值传递”,由于函数将自动产生临时变量用于复制该参数,该输入参数本来就无需保护,所以不要加const修饰。
例如不要将函数void Func1(int x) 写成void Func1(const int x)。同理不要将函数void Func2(A a) 写成void Func2(const A a)。其中A为用户自定义的数据类型。
u 对于非内部数据类型的参数而言,象void Func(A a) 这样声明的函数注定效率比较底。因为函数体内将产生A类型的临时对象用于复制参数a,而临时对象的构造、复制、析构过程都将消耗时间。
为了提高效率,可以将函数声明改为void Func(A &a),因为“引用传递”仅借用一下参数的别名而已,不需要产生临时对象。但是函数void Func(A &a) 存在一个缺点:“引用传递”有可能改变参数a,这是我们不期望的。解决这个问题很容易,加const修饰即可,因此函数最终成为void Func(const A &a)。
以此类推,是否应将void Func(int x) 改写为void Func(const int &x),以便提高效率?完全没有必要,因为内部数据类型的参数不存在构造、析构的过程,而复制也非常快,“值传递”和“引用传递”的效率几乎相当。
问题是如此的缠绵,我只好将“const &”修饰输入参数的用法总结一下,如表11-1-1所示。
对于非内部数据类型的输入参数,应该将“值传递”的方式改为“const引用传递”,目的是提高效率。例如将void Func(A a) 改为void Func(const A &a)。

对于内部数据类型的输入参数,不要将“值传递”的方式改为“const引用传递”。否则既达不到提高效率的目的,又降低了函数的可理解性。例如void Func(int x) 不应该改为void Func(const int &x)。

表11-1-1 “const &”修饰输入参数的规则
11.1.2 用const修饰函数的返回值
u 如果给以“指针传递”方式的函数返回值加const修饰,那么函数返回值(即指针)的内容不能被修改,该返回值只能被赋给加const修饰的同类型指针。
例如函数
const char * GetString(void);
如下语句将出现编译错误:
char *str = GetString();
正确的用法是
const char *str = GetString();
u 如果函数返回值采用“值传递方式”,由于函数会把返回值复制到外部临时的存储单元中,加const修饰没有任何价值。
例如不要把函数int GetInt(void) 写成const int GetInt(void)。
同理不要把函数A GetA(void) 写成const A GetA(void),其中A为用户自定义的数据类型。
如果返回值不是内部数据类型,将函数A GetA(void) 改写为const A & GetA(void)的确能提高效率。但此时千万千万要小心,一定要搞清楚函数究竟是想返回一个对象的“拷贝”还是仅返回“别名”就可以了,否则程序会出错。见6.2节“返回值的规则”。
u 函数返回值采用“引用传递”的场合并不多,这种方式一般只出现在类的赋值函数中,目的是为了实现链式表达。
例如

class A
{…
A & operate = (const A &other); // 赋值函数
};
A a, b, c; // a, b, c 为A的对象
…
a = b = c; // 正常的链式赋值
(a = b) = c; // 不正常的链式赋值,但合法

如果将赋值函数的返回值加const修饰,那么该返回值的内容不允许被改动。上例中,语句 a = b = c仍然正确,但是语句 (a = b) = c 则是非法的。
11.1.3 const成员函数
任何不会修改数据成员的函数都应该声明为const类型。如果在编写const成员函数时,不慎修改了数据成员,或者调用了其它非const成员函数,编译器将指出错误,这无疑会提高程序的健壮性。
以下程序中,类stack的成员函数GetCount仅用于计数,从逻辑上讲GetCount应当为const函数。编译器将指出GetCount函数中的错误。

class Stack
{
public:
void Push(int elem);
int Pop(void);
int GetCount(void) const; // const成员函数
private:
int m_num;
int m_data[100];
};
int Stack::GetCount(void) const
{
++ m_num; // 编译错误,企图修改数据成员m_num
Pop(); // 编译错误,企图调用非const函数
return m_num;
}

const成员函数的声明看起来怪怪的:const关键字只能放在函数声明的尾部,大概是因为其它地方都已经被占用了。

11.2 提高程序的效率

程序的时间效率是指运行速度,空间效率是指程序占用内存或者外存的状况。
全局效率是指站在整个系统的角度上考虑的效率,局部效率是指站在模块或函数角度上考虑的效率。
l 【规则11-2-1】不要一味地追求程序的效率,应当在满足正确性、可靠性、健壮性、可读性等质量因素的前提下,设法提高程序的效率。
l 【规则11-2-2】以提高程序的全局效率为主,提高局部效率为辅。
l 【规则11-2-3】在优化程序的效率时,应当先找出限制效率的“瓶颈”,不要在无关紧要之处优化。
l 【规则11-2-4】先优化数据结构和算法,再优化执行代码。
l 【规则11-2-5】有时候时间效率和空间效率可能对立,此时应当分析那个更重要,作出适当的折衷。例如多花费一些内存来提高性能。
l 【规则11-2-6】不要追求紧凑的代码,因为紧凑的代码并不能产生高效的机器码。
11.3 一些有益的建议
2 【建议11-3-1】当心那些视觉上不易分辨的操作符发生书写错误。
我们经常会把“==”误写成“=”,象“||”、“&&”、“<=”、“>=”这类符号也很容易发生“丢1”失误。然而编译器却不一定能自动指出这类错误。
2 【建议11-3-2】变量(指针、数组)被创建之后应当及时把它们初始化,以防止把未被初始化的变量当成右值使用。
2 【建议11-3-3】当心变量的初值、缺省值错误,或者精度不够。
2 【建议11-3-4】当心数据类型转换发生错误。尽量使用显式的数据类型转换(让人们知道发生了什么事),避免让编译器轻悄悄地进行隐式的数据类型转换。
2 【建议11-3-5】当心变量发生上溢或下溢,数组的下标越界。
2 【建议11-3-6】当心忘记编写错误处理程序,当心错误处理程序本身有误。
2 【建议11-3-7】当心文件I/O有错误。
2 【建议11-3-8】避免编写技巧性很高代码。
2 【建议11-3-9】不要设计面面俱到、非常灵活的数据结构。
2 【建议11-3-10】如果原有的代码质量比较好,尽量复用它。但是不要修补很差劲的代码,应当重新编写。
2 【建议11-3-11】尽量使用标准库函数,不要“发明”已经存在的库函数。
2 【建议11-3-12】尽量不要使用与具体硬件或软件环境关系密切的变量。
2 【建议11-3-13】把编译器的选择项设置为最严格状态。
2 【建议11-3-14】如果可能的话,使用PC-Lint、LogiScope等工具进行代码审查。
*参考文献
[Cline] Marshall P. Cline and Greg A. Lomow, C++ FAQs, Addison-Wesley, 1995
[Eckel] Bruce Eckel, Thinking in C++(C++ 编程思想,刘宗田 等译),机械工业出版社,2000
[Maguire] Steve Maguire, Writing Clean Code(编程精粹,姜静波 等译),电子工业出版社,1993
[Meyers] Scott Meyers, Effective C++, Addison-Wesley, 1992
[Murry] Robert B. Murry, C++ Strategies and Tactics, Addison-Wesley, 1993
[Summit] Steve Summit, C Programming FAQs, Addison-Wesley, 1996*

网友评论

登录后评论
0/500
评论
dukeke
+ 关注