MongoDB readConcern 原理解析

本文涉及的产品
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: MongoDB 可以通过 writeConcern 来定制写策略,3.2版本后又引入了 readConcern 来灵活的定制读策略。 readConcern vs readPreference MongoDB 控制读策略,还有一个 readPreference 的设置,为了避免混淆,先简单说明下

MongoDB 可以通过 writeConcern 来定制写策略,3.2版本后又引入了 readConcern 来灵活的定制读策略。

readConcern vs readPreference

MongoDB 控制读策略,还有一个 readPreference 的设置,为了避免混淆,先简单说明下二者的区别。

  • readPreference 主要控制客户端 Driver 从复制集的哪个节点读取数据,这个特性可方便的实现读写分离、就近读取等策略。

    • primary 只从 primary 节点读数据,这个是默认设置
    • primaryPreferred 优先从 primary 读取,primary 不可服务,从 secondary 读
    • secondary 只从 scondary 节点读数据
    • secondaryPreferred 优先从 secondary 读取,没有 secondary 成员时,从 primary 读取
    • nearest 根据网络距离就近读取
  • readConcern 决定到某个读取数据时,能读到什么样的数据。

    • local 能读取任意数据,这个是默认设置
    • majority 只能读取到『成功写入到大多数节点的数据』

readPreferencereadConcern 可以配合使用。

readConcern 解决什么问题?

readConcern 的初衷在于解决『脏读』的问题,比如用户从 MongoDB 的 primary 上读取了某一条数据,但这条数据并没有同步到大多数节点,然后 primary 就故障了,重新恢复后 这个primary 节点会将未同步到大多数节点的数据回滚掉,导致用户读到了『脏数据』。

当指定 readConcern 级别为 majority 时,能保证用户读到的数据『已经写入到大多数节点』,而这样的数据肯定不会发生回滚,避免了脏读的问题。

需要注意的是,readConcern 能保证读到的数据『不会发生回滚』,但并不能保证读到的数据是最新的,这个官网上也有说明。

Regardless of the read concern level, the most recent data on a node may not reflect the most recent version of the data in the system.

有用户误以为,readConcern 指定为 majority 时,客户端会从大多数的节点读取数据,然后返回最新的数据。

实际上并不是这样,无论何种级别的 readConcern,客户端都只会从『某一个确定的节点』(具体是哪个节点由 readPreference 决定)读取数据,该节点根据自己看到的同步状态视图,只会返回已经同步到大多数节点的数据。

readConcern 实现原理

MongoDB 要支持 majority 的 readConcern 级别,必须设置replication.enableMajorityReadConcern参数,加上这个参数后,MongoDB 会起一个单独的snapshot 线程,会周期性的对当前的数据集进行 snapshot,并记录 snapshot 时最新 oplog的时间戳,得到一个映射表。

最新 oplog 时间戳 snapshot 状态
t0 snapshot0 committed
t1 snapshot1 uncommitted
t2 snapshot2 uncommitted
t3 snapshot3 uncommitted

只有确保 oplog 已经同步到大多数节点时,对应的 snapshot 才会标记为 commmited,用户读取时,从最新的 commited 状态的 snapshot 读取数据,就能保证读到的数据一定已经同步到的大多数节点。

关键的问题就是如何确定『oplog 已经同步到大多数节点』?

primary 节点

secondary 节点在 自身oplog发生变化时,会通过 replSetUpdatePosition 命令来将 oplog 进度立即通知给 primary,另外心跳的消息里也会包含最新 oplog 的信息;通过上述方式,primary 节点能很快知道 oplog 同步情况,知道『最新一条已经同步到大多数节点的 oplog』,并更新 snapshot 的状态。比如当t2已经写入到大多数据节点时,snapshot1、snapshot2都可以更新为 commited 状态。(不必要的 snapshot也会定期被清理掉)

secondary 节点

secondary 节点拉取 oplog 时,primary 节点会将『最新一条已经同步到大多数节点的 oplog』的信息返回给 secondary 节点,secondary 节点通过这个oplog时间戳来更新自身的 snapshot 状态。

注意事项

  • 目前 readConcern 主要用于跟 mongos 与 config server 的交互上,参考MongoDB Sharded Cluster 路由策略
  • 使用 readConcern 需要配置replication.enableMajorityReadConcern选项
  • 只有支持 readCommited 隔离级别的存储引擎才能支持 readConcern,比如 wiredtiger 引擎,而 mmapv1引擎则不能支持。
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
相关文章
|
1月前
|
安全 算法 网络协议
解析:HTTPS通过SSL/TLS证书加密的原理与逻辑
HTTPS通过SSL/TLS证书加密,结合对称与非对称加密及数字证书验证实现安全通信。首先,服务器发送含公钥的数字证书,客户端验证其合法性后生成随机数并用公钥加密发送给服务器,双方据此生成相同的对称密钥。后续通信使用对称加密确保高效性和安全性。同时,数字证书验证服务器身份,防止中间人攻击;哈希算法和数字签名确保数据完整性,防止篡改。整个流程保障了身份认证、数据加密和完整性保护。
|
3月前
|
存储 缓存 算法
HashMap深度解析:从原理到实战
HashMap,作为Java集合框架中的一个核心组件,以其高效的键值对存储和检索机制,在软件开发中扮演着举足轻重的角色。作为一名资深的AI工程师,深入理解HashMap的原理、历史、业务场景以及实战应用,对于提升数据处理和算法实现的效率至关重要。本文将通过手绘结构图、流程图,结合Java代码示例,全方位解析HashMap,帮助读者从理论到实践全面掌握这一关键技术。
131 14
|
4月前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
186 3
|
26天前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
189 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
27天前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
70 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
5天前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
34 1
|
1月前
|
机器学习/深度学习 算法 数据挖掘
解析静态代理IP改善游戏体验的原理
静态代理IP通过提高网络稳定性和降低延迟,优化游戏体验。具体表现在加快游戏网络速度、实时玩家数据分析、优化游戏设计、简化更新流程、维护网络稳定性、提高连接可靠性、支持地区特性及提升访问速度等方面,确保更流畅、高效的游戏体验。
85 22
解析静态代理IP改善游戏体验的原理
|
1月前
|
编解码 缓存 Prometheus
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
本期内容为「ximagine」频道《显示器测试流程》的规范及标准,我们主要使用Calman、DisplayCAL、i1Profiler等软件及CA410、Spyder X、i1Pro 2等设备,是我们目前制作内容数据的重要来源,我们深知所做的仍是比较表面的活儿,和工程师、科研人员相比有着不小的差距,测试并不复杂,但是相当繁琐,收集整理测试无不花费大量时间精力,内容不完善或者有错误的地方,希望大佬指出我们好改进!
130 16
「ximagine」业余爱好者的非专业显示器测试流程规范,同时也是本账号输出内容的数据来源!如何测试显示器?荒岛整理总结出多种测试方法和注意事项,以及粗浅的原理解析!
|
1月前
|
Java 数据库 开发者
详细介绍SpringBoot启动流程及配置类解析原理
通过对 Spring Boot 启动流程及配置类解析原理的深入分析,我们可以看到 Spring Boot 在启动时的灵活性和可扩展性。理解这些机制不仅有助于开发者更好地使用 Spring Boot 进行应用开发,还能够在面对问题时,迅速定位和解决问题。希望本文能为您在 Spring Boot 开发过程中提供有效的指导和帮助。
99 12
|
1月前
|
开发框架 监控 JavaScript
解锁鸿蒙装饰器:应用、原理与优势全解析
ArkTS提供了多维度的状态管理机制。在UI开发框架中,与UI相关联的数据可以在组件内使用,也可以在不同组件层级间传递,比如父子组件之间、爷孙组件之间,还可以在应用全局范围内传递或跨设备传递。
53 2

相关产品

  • 云数据库 MongoDB 版
  • 推荐镜像

    更多
    AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等