Spark修炼之道(高级篇)——Spark源码阅读:第一节 Spark应用程序提交流程

简介: 作者:摇摆少年梦 微信号: zhouzhihubeyondspark-submit 脚本应用程序提交流程在运行Spar应用程序时,会将spark应用程序打包后使用spark-submit脚本提交到Spark中运行,执行提交命令如下:root@sparkmaster:/hadoopLearning/spark-1.5.0-bin-hadoop2.4/bin# .

作者:摇摆少年梦
微信号: zhouzhihubeyond

spark-submit 脚本应用程序提交流程

在运行Spar应用程序时,会将spark应用程序打包后使用spark-submit脚本提交到Spark中运行,执行提交命令如下:

root@sparkmaster:/hadoopLearning/spark-1.5.0-bin-hadoop2.4/bin# 
./spark-submit --master spark://sparkmaster:7077 
--class SparkWordCount --executor-memory 1g
 /root/IdeaProjects/SparkWordCount/out/artifacts/SparkWord
 Count_jar/SparkWordCount.jar  hdfs://ns1/README.md
 hdfs://ns1/SparkWordCountResult
AI 代码解读

为弄清楚整个流程,我们先来分析一下spark-submit脚本,spark-submit脚本内容如下:

#!/usr/bin/env bash

SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"

# disable randomized hash for string in Python 3.3+
export PYTHONHASHSEED=0

#spark-submit最终调用的是spark-class脚本
#传入的类是org.apache.spark.deploy.SparkSubmit
#及其它传入的参数,如deploy mode、executor-memory等
exec "$SPARK_HOME"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
AI 代码解读

spark-class脚本会加载spark配置的环境变量信息、定位依赖包spark-assembly-1.5.0-hadoop2.4.0.jar文件(以spark1.5.0为例)等,然后再调用org.apache.spark.launcher.Main正式启动Spark应用程序的运行,具体如下:

# Figure out where Spark is installed
#定位SAPRK_HOME目录
export SPARK_HOME="$(cd "`dirname "$0"`"/..; pwd)"

#加载load-spark-env.sh,运行环境相关信息
#例如配置文件conf下的spark-env.sh等
. "$SPARK_HOME"/bin/load-spark-env.sh

# Find the java binary
# 定位JAVA_HOME目录
if [ -n "${JAVA_HOME}" ]; then
  RUNNER="${JAVA_HOME}/bin/java"
else
  if [ `command -v java` ]; then
    RUNNER="java"
  else
    echo "JAVA_HOME is not set" >&2
    exit 1
  fi
fi

# Find assembly jar
#定位spark-assembly-1.5.0-hadoop2.4.0.jar文件(以spark1.5.0为例)
#这意味着任务提交时无需将该JAR文件打包
SPARK_ASSEMBLY_JAR=
if [ -f "$SPARK_HOME/RELEASE" ]; then
  ASSEMBLY_DIR="$SPARK_HOME/lib"
else
  ASSEMBLY_DIR="$SPARK_HOME/assembly/target/scala-$SPARK_SCALA_VERSION"
fi

num_jars="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" | wc -l)"
if [ "$num_jars" -eq "0" -a -z "$SPARK_ASSEMBLY_JAR" ]; then
  echo "Failed to find Spark assembly in $ASSEMBLY_DIR." 1>&2
  echo "You need to build Spark before running this program." 1>&2
  exit 1
fi
ASSEMBLY_JARS="$(ls -1 "$ASSEMBLY_DIR" | grep "^spark-assembly.*hadoop.*\.jar$" || true)"
if [ "$num_jars" -gt "1" ]; then
  echo "Found multiple Spark assembly jars in $ASSEMBLY_DIR:" 1>&2
  echo "$ASSEMBLY_JARS" 1>&2
  echo "Please remove all but one jar." 1>&2
  exit 1
fi

SPARK_ASSEMBLY_JAR="${ASSEMBLY_DIR}/${ASSEMBLY_JARS}"

LAUNCH_CLASSPATH="$SPARK_ASSEMBLY_JAR"

# Add the launcher build dir to the classpath if requested.
if [ -n "$SPARK_PREPEND_CLASSES" ]; then
  LAUNCH_CLASSPATH="$SPARK_HOME/launcher/target/scala-$SPARK_SCALA_VERSION/classes:$LAUNCH_CLASSPATH"
fi

export _SPARK_ASSEMBLY="$SPARK_ASSEMBLY_JAR"

# The launcher library will print arguments separated by a NULL character, to allow arguments with
# characters that would be otherwise interpreted by the shell. Read that in a while loop, populating
# an array that will be used to exec the final command.
#执行org.apache.spark.launcher.Main作为Spark应用程序的主入口
CMD=()
while IFS= read -d '' -r ARG; do
  CMD+=("$ARG")
done < <("$RUNNER" -cp "$LAUNCH_CLASSPATH" org.apache.spark.launcher.Main "$@")
exec "${CMD[@]}"
AI 代码解读

从上述代码中,可以看到,通过org.apache.spark.launcher.Main类启动org.apache.spark.deploy.SparkSubmit的执行,SparkSubmit部分源码如下:

//SparkSubmit Main方法
def main(args: Array[String]): Unit = {
    //任务提交时设置的参数,见图2
    val appArgs = new SparkSubmitAarguments(args)
    if (appArgs.verbose) {
      // scalastyle:off println
      printStream.println(appArgs)
      // scalastyle:on println
    }
    appArgs.action match {
      //任务提交时,执行submit(appArgs)
      case SparkSubmitAction.SUBMIT => submit(appArgs)
      case SparkSubmitAction.KILL => kill(appArgs)
      case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs)
    }
  }
AI 代码解读

这里写图片描述
图1 appArgs = new SparkSubmitAarguments(args)参数

进入submit方法:

  /**
   * Submit the application using the provided parameters.
   *
   * This runs in two steps. First, we prepare the launch environment by setting up
   * the appropriate classpath, system properties, and application arguments for
   * running the child main class based on the cluster manager and the deploy mode.
   * Second, we use this launch environment to invoke the main method of the child
   * main class.
   */
  private def submit(args: SparkSubmitArguments): Unit = {
   //运行参数等信息,见图2
    val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args)
    //定义在submit方法中的方法doRunMain()
    def doRunMain(): Unit = {
      if (args.proxyUser != null) {
        val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser,
          UserGroupInformation.getCurrentUser())
        try {
          proxyUser.doAs(new PrivilegedExceptionAction[Unit]() {
            override def run(): Unit = {
              //执行runMain方法
              runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
            }
          })
        } catch {
          case e: Exception =>
            // Hadoop's AuthorizationException suppresses the exception's stack trace, which
            // makes the message printed to the output by the JVM not very helpful. Instead,
            // detect exceptions with empty stack traces here, and treat them differently.
            if (e.getStackTrace().length == 0) {
              // scalastyle:off println
              printStream.println(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}")
              // scalastyle:on println
              exitFn(1)
            } else {
              throw e
            }
        }
      } else {
        //执行runMain方法
        runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose)
      }
    }

     // In standalone cluster mode, there are two submission gateways:
     //   (1) The traditional Akka gateway using o.a.s.deploy.Client as a wrapper
     //   (2) The new REST-based gateway introduced in Spark 1.3
     // The latter is the default behavior as of Spark 1.3, but Spark submit will fail over
     // to use the legacy gateway if the master endpoint turns out to be not a REST server.
    if (args.isStandaloneCluster && args.useRest) {
      try {
        // scalastyle:off println
        printStream.println("Running Spark using the REST application submission protocol.")
        // scalastyle:on println
        //调用submit方法中的doRunMain方法
        doRunMain()
      } catch {
        // Fail over to use the legacy submission gateway
        case e: SubmitRestConnectionException =>
          printWarning(s"Master endpoint ${args.master} was not a REST server. " +
            "Falling back to legacy submission gateway instead.")
          args.useRest = false
          submit(args)
      }
    // In all other modes, just run the main class as prepared
    } else {
       //调用submit方法中的doRunMain方法
      doRunMain()
    }
  }
AI 代码解读

这里写图片描述
图2 任务提交时设置的参数,

从上面的代码可以看到,最终调用的是runMain方法,其源码如下:

/**
   * Run the main method of the child class using the provided launch environment.
   *
   * Note that this main class will not be the one provided by the user if we're
   * running cluster deploy mode or python applications.
   */
  private def runMain(
      childArgs: Seq[String],
      childClasspath: Seq[String],
      sysProps: Map[String, String],
      childMainClass: String,
      verbose: Boolean): Unit = {
    // scalastyle:off println
    if (verbose) {
      printStream.println(s"Main class:\n$childMainClass")
      printStream.println(s"Arguments:\n${childArgs.mkString("\n")}")
      printStream.println(s"System properties:\n${sysProps.mkString("\n")}")
      printStream.println(s"Classpath elements:\n${childClasspath.mkString("\n")}")
      printStream.println("\n")
    }
    // scalastyle:on println

    val loader =
      if (sysProps.getOrElse("spark.driver.userClassPathFirst", "false").toBoolean) {
        new ChildFirstURLClassLoader(new Array[URL](0),
          Thread.currentThread.getContextClassLoader)
      } else {
        new MutableURLClassLoader(new Array[URL](0),
          Thread.currentThread.getContextClassLoader)
      }
    Thread.currentThread.setContextClassLoader(loader)

    for (jar <- childClasspath) {
      addJarToClasspath(jar, loader)
    }

    for ((key, value) <- sysProps) {
      System.setProperty(key, value)
    }

    var mainClass: Class[_] = null

    try {
      //复用反射加载childMainClass,这里为SparkWordCount
      mainClass = Utils.classForName(childMainClass)
    } catch {
      case e: ClassNotFoundException =>
        e.printStackTrace(printStream)
        if (childMainClass.contains("thriftserver")) {
          // scalastyle:off println
          printStream.println(s"Failed to load main class $childMainClass.")
          printStream.println("You need to build Spark with -Phive and -Phive-thriftserver.")
          // scalastyle:on println
        }
        System.exit(CLASS_NOT_FOUND_EXIT_STATUS)
    }

    // SPARK-4170
    if (classOf[scala.App].isAssignableFrom(mainClass)) {
      printWarning("Subclasses of scala.App may not work correctly. Use a main() method instead.")
    }

    //调用反射机制加载main方法,即SparkWordCount中的main方法
    val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
    if (!Modifier.isStatic(mainMethod.getModifiers)) {
      throw new IllegalStateException("The main method in the given main class must be static")
    }

    def findCause(t: Throwable): Throwable = t match {
      case e: UndeclaredThrowableException =>
        if (e.getCause() != null) findCause(e.getCause()) else e
      case e: InvocationTargetException =>
        if (e.getCause() != null) findCause(e.getCause()) else e
      case e: Throwable =>
        e
    }

    try {
      //执行main方法,即执行SparkWordCount
      mainMethod.invoke(null, childArgs.toArray)
    } catch {
      case t: Throwable =>
        throw findCause(t)
    }
  }
AI 代码解读

mainMethod.invoke(null, childArgs.toArray)方法执行完毕后,进入SparkWordCount的main方法,执行Spark应用程序,如下图
这里写图片描述
至此,正式完成Spark应用程序执行的提交。

目录
打赏
0
0
0
1
476
分享
相关文章
Linux环境下 java程序提交spark任务到Yarn报错
Linux环境下 java程序提交spark任务到Yarn报错
58 5
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
大数据-98 Spark 集群 Spark Streaming 基础概述 架构概念 执行流程 优缺点
58 0
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
大数据-91 Spark 集群 RDD 编程-高阶 RDD广播变量 RDD累加器 Spark程序优化
61 0
Spark3.3.0源码编译补充篇-抓狂的证书问题
Spark3.3.0源码编译补充篇-抓狂的证书问题
54 0
肝Spark源码的若干骚操作
肝Spark源码的若干骚操作
58 0
Spark 单元测试报Error:(26, 16) java: 程序包sun.misc不存在
Spark 单元测试报Error:(26, 16) java: 程序包sun.misc不存在
160 0
Spark3.0源码编译打包
Spark3.0源码编译打包
53 0
Spark学习---day06、Spark内核(源码提交流程、任务执行)
Spark学习---day06、Spark内核(源码提交流程、任务执行)
121 2
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
205 2
ClickHouse与大数据生态集成:Spark & Flink 实战
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
86 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等