Linux中通过/dev/mem操控物理地址

简介:


/dev/mem是物理内存的全映像,可以用来访问物理内存,用mmap来访问物理内存以及外设的IO资源,是实现用户空间驱动的一种方法

我们先用hexedit来看下/dev/mem,hexedit /dev/mem 可以物理内存的信息,当然肉眼是无法看的毕竟是16进制。

00000000   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

00000010   53 FF 00 F0  53 FF 00 F0  CC E9 00 F0  53 FF 00 F0  S...S.......S...

00000020   A5 FE 00 F0  87 E9 00 F0  53 FF 00 F0  46 E7 00 F0  ........S...F...

00000030   46 E7 00 F0  46 E7 00 F0  57 EF 00 F0  53 FF 00 F0  F...F...W...S...

00000040   22 00 00 C0  4D F8 00 F0  41 F8 00 F0  FE E3 00 F0  "...M...A.......

00000050   39 E7 00 F0  59 F8 00 F0  2E E8 00 F0  D4 EF 00 F0  9...Y...........

00000060   A4 F0 00 F0  F2 E6 00 F0  6E FE 00 F0  53 FF 00 F0  ........n...S...

00000070   ED EF 00 F0  53 FF 00 F0  C7 EF 00 F0  EC 57 00 C0  ....S........W..

00000080   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

00000090   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000A0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000B0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000C0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000D0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000E0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

000000F0   53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  53 FF 00 F0  S...S...S...S...

不过可以用mmap将/dev/mem 映射出来,然后可以对其读写可以实现用户空间的内核操作。先来说下mmap函数,

void *mmap(void *addr, size_t length, int prot, int flags,

                  int fd, off_t offset);

共6个参数含义分别如下:

l   addr如果为null,那么有内核选择一个映射的地址,如果不为null,那内核会把参数当做映射的提示(映射的地址就在所提示的附近,不会百分百确保的)

l   length表示映射长度

l   prot表示对映射的保护, 可以是可执行,可读,可写或不可访问,PROT_EXEC,PROT_READ,PROT_WRITE,PROT_NONE

l   flag表示是否对其他进程可见,MAP_SHARED表示其他进程可见。

l   fd需要映射的文件描述符

l   offset指向fd的编译

接下去我们用mmap来映射/dev/mem,编写代码如下:

#include<stdio.h>

#include<unistd.h>

#include<sys/mman.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>

 

int

main ()

{

  unsigned char *map_base;

  FILE *f;

  int n, fd;

 

  fd = open ("/dev/mem", O_RDWR | O_SYNC);

  if (fd == -1)

    {

      printf ("open /dev/mem fail!\n");

      return (-1);

    }

 

  map_base =

    mmap (NULL, 0xff, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x20000);

  if (map_base == 0)

    {

      printf ("NULL pointer!\n");

    }

  else

    {

      printf ("map Successfull!\n");

    }

 

  unsigned long addr;

  unsigned char content;

 

  int i = 0;

  for (; i < 0xf; ++i)

    {

      addr = (unsigned long) (map_base + i);

      content = map_base[i];

      printf ("address: 0x%lx   value: 0x%x\t\t", addr,

              (unsigned int) content);

 

      map_base[i] = (unsigned char) i;

      content = map_base[i];

      printf ("address: 0x%lx   value: 0x%x\t\t", addr,

              (unsigned int) content);

 

      map_base[i] = (unsigned char) i;

      content = map_base[i];

      printf ("address: 0x%lx   new value: 0x%x\n", addr,

              (unsigned int) content);

    }

 

  close (fd);

  munmap (map_base, 0xff);

  return (1);

}

编译后,执行如下:

map Successfull!

address: 0x7fbaafb5e000   value: 0x0         address: 0x7fbaafb5e000   new value: 0x0

address: 0x7fbaafb5e001   value: 0x0         address: 0x7fbaafb5e001   new value: 0x1

address: 0x7fbaafb5e002   value: 0x0         address: 0x7fbaafb5e002   new value: 0x2

address: 0x7fbaafb5e003   value: 0x0         address: 0x7fbaafb5e003   new value: 0x3

address: 0x7fbaafb5e004   value: 0x0         address: 0x7fbaafb5e004   new value: 0x4

address: 0x7fbaafb5e005   value: 0x0         address: 0x7fbaafb5e005   new value: 0x5

address: 0x7fbaafb5e006   value: 0x0         address: 0x7fbaafb5e006   new value: 0x6

address: 0x7fbaafb5e007   value: 0x0         address: 0x7fbaafb5e007   new value: 0x7

address: 0x7fbaafb5e008   value: 0x0         address: 0x7fbaafb5e008   new value: 0x8

address: 0x7fbaafb5e009   value: 0x0         address: 0x7fbaafb5e009   new value: 0x9

address: 0x7fbaafb5e00a   value: 0x0         address: 0x7fbaafb5e00a   new value: 0xa

address: 0x7fbaafb5e00b   value: 0x0         address: 0x7fbaafb5e00b   new value: 0xb

address: 0x7fbaafb5e00c   value: 0x0         address: 0x7fbaafb5e00c   new value: 0xc

address: 0x7fbaafb5e00d   value: 0x0         address: 0x7fbaafb5e00d   new value: 0xd

address: 0x7fbaafb5e00e   value: 0x0       address: 0x7fbaafb5e00e   new value: 0xe

例子将物理地址起始地址0x20000, 长度为0xf映射出来了,然后进行了读写操作。这里0x7fbaafb5e000是mmap函数返回的映射地址。第二次执行的时候,会发现内存中的值已经是上次修改过的值了并非全0.。

       大家可以把0x20000地址改成0x000地址(3G)地址,然后长度改成0xffffff,会出现段错误。系统的内存是段保护的,可以随便修改内存中的值系统是要崩溃的。

       /dev/mem还可以用来检测系统甚至给系统打补丁,为了防止/dev/mem被注入代码,可以设置系统配置选项CONFIG_STRICT_DEVMEM=y

此外还有port和kmem,/dev/port同/dev/mem,不过访问的是I/O端口。

/dev/kmem也同/dev/mem,不过其访问的是虚拟内存而不是物理内存。

 

 


目录
相关文章
|
2月前
|
存储 缓存 Linux
如何在Linux环境下对pip的缓存地址进行修改
如何在Linux环境下对pip的缓存地址进行修改
111 0
|
2天前
|
存储 算法 Linux
【Linux】线程的内核级理解&&详谈页表以及虚拟地址到物理地址之间的转化
【Linux】线程的内核级理解&&详谈页表以及虚拟地址到物理地址之间的转化
|
3天前
|
存储 安全 Linux
Linux:进程地址空间
Linux:进程地址空间
21 10
|
11天前
|
存储 Linux 程序员
【Linux-14】进程地址空间&虚拟空间&页表——原理&知识点详解
【Linux-14】进程地址空间&虚拟空间&页表——原理&知识点详解
|
14天前
|
网络协议 Linux 开发工具
|
19天前
|
安全 Linux 编译器
【linux进程(七)】程序地址空间深度剖析
【linux进程(七)】程序地址空间深度剖析
|
19天前
|
Shell Linux 程序员
【linux进程(六)】环境变量再理解&程序地址空间初认识
【linux进程(六)】环境变量再理解&程序地址空间初认识
|
19天前
|
网络协议 Linux 程序员
【Linux】虚拟机ipv4地址消失,主机ping不通
【Linux】虚拟机ipv4地址消失,主机ping不通
37 0
|
20天前
|
存储 Linux 调度
Linux的学习之路:12、地址空间(续)与进程的创建、终止和等待
Linux的学习之路:12、地址空间(续)与进程的创建、终止和等待
20 0
|
20天前
|
Linux C++
Linux的学习之路:11、地址空间
Linux的学习之路:11、地址空间
19 0