10分钟搭建MySQL Binlog分析+可视化方案

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介:

日志服务最近在原有 30+ 种数据采集渠道 基础上,新增 MySQL Binlog、MySQL select 等数据库方案,仍然主打快捷、实时、稳定、所见即所得的特点。

以下我们以用户登录数据库作为案例。公司内非常多的人员依赖于用户登录数据以及其衍生出来的相关数据:

d47e62d2b349aca45e42305ed6714efbe5ed61d9老板要看大屏,每天 UV、PV 增长在哪里?
d47e62d2b349aca45e42305ed6714efbe5ed61d9安全要监控登录是否异常,现在用户账户是否遭到集体攻击?
d47e62d2b349aca45e42305ed6714efbe5ed61d9客户小二接到用户反馈,如何实时查询用户登录信息?
d47e62d2b349aca45e42305ed6714efbe5ed61d9BI需要分析用户行为,数据分析如何关联用户登录数据?

d47e62d2b349aca45e42305ed6714efbe5ed61d9审计上门了,请把您3年前用户的登录数据拿出来吧?

afc48c13259810d00df6b374321a3fde4ae99216

接下来我们将演示如何在10分钟内手把手完成从 binlog 采集到查询、告警、搭建报表等全过程,满足各个老板们的需求:

d47e62d2b349aca45e42305ed6714efbe5ed61d9MySQL Binlog 采集

d47e62d2b349aca45e42305ed6714efbe5ed61d9关键字段索引+统计设置

d47e62d2b349aca45e42305ed6714efbe5ed61d9对异常账号进行查询分析

d47e62d2b349aca45e42305ed6714efbe5ed61d9对异常登录进行告警

d47e62d2b349aca45e42305ed6714efbe5ed61d9配置可视化仪表盘

d47e62d2b349aca45e42305ed6714efbe5ed61d9对历史登录信息备份以备数据审计

环境准备

数据库

MySQL 类型数据库(使用 MySQL 协议,例如 RDS、DRDS 等),数据库开启 binlog,且配置 binlog 类型为 ROW 模式(RDS 默认开启)

用户登录表结构

4859cd5216915c6ea5256f5e1b7d6bcbf6aa407f

用户登录表中记录了登录 id、登录时间、登录 ip、登录设备、用户 id、登录结果、连续登录失败次数、下一次校验类型等信息。其中登录验证规则如下:

d47e62d2b349aca45e42305ed6714efbe5ed61d9正常情况只验证账号密码匹配

d47e62d2b349aca45e42305ed6714efbe5ed61d9若用户连续登录失败超过3次或者当前ip和上次登录ip不在同一省,下次登录将弹出验证码

d47e62d2b349aca45e42305ed6714efbe5ed61d9若用户连续登录失败超过5次,则下次登录将使用手机验证码

用户登录时表的更新方案

d47e62d2b349aca45e42305ed6714efbe5ed61d9方案1:

每次用户登录,在 user_login 中新增一条记录,记录登录的ip、设备类型、时间信息

d47e62d2b349aca45e42305ed6714efbe5ed61d9方案2:

考虑到用户数量非常多,如果每次用户登录都在 user_login 中新增一条记录,数据量会非常大,所以每次用户登录时,只会根据 user_id 更新 update 表中的数据

对于方案1,优点是数据库中保存了所有用户的登录信息,缺点是 user_login 表会存在爆掉的问题,需要定期删除历史的数据;对于方案2,优点是 user_login 表的大小可控,缺点是会丢失历史用户的登录信息。

这里我们推荐使用方案 2+logtail binlog 采集组成最优的方案3:用户最近一次登录信息依然保存在数据库中,通过 logtail 的 binlog 功能采集 user_login 表,logtail 会将表中的每次修改事件上传到日志服务,日志服务中的数据可设置保存时间,超时自动删除。同时在日志服务中,可以对实时采集上来的数据进行查询、统计、查看报表、监控报警,也支持将数据对接下游流计算、导入 Max Compute/OSS 等。

66e907f939047ba79877ddf4afa15bd802acbec1

数据采集

安装 logtail

根据文档安装 logtail,确认版本号在0.16.0及以上。若低于0.16.0版本请根据文档提示升级到最新版本。

采集配置

d47e62d2b349aca45e42305ed6714efbe5ed61d9在日志服务控制台创建一个新的 Logstore,采集向导中选择自建软件中的 Mysql binlog

12fef8b8b8577c8f30876a0424ca1d09978ed9c3

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:

0d1c7c08960dbc697c054097528ae39ec6066dfe

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:注意:

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:数据库开启 binlog 且为 ROW 模式(RDS 默认支持),使用的账户具有 mysql slave 权限以及需要采集的数据表的 select 权限。

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:binlog 支持 IncludeTables 和 ExcludeTables 过滤,格式均为正则表达式

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:其他请参考 binlog 采集中使用限制

建立索引

配置应用到机器组后,进入索引查询配置页面。在键值索引属性中配置以下索引项:

53aef202afed4a98c3009c370f77bc293b39c411

数据预览

应用配置1分钟后,点击预览可以看到状态数据已经采集上来(logtail 的 binlog 采集会额外上传数据操作类型、GTID 等信息):

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:对于修改的事件,Logtail 会同时采集修改前和修改后的数据,修改前的数据以 old_开头。因此我们可以基于修改前后的数据对比查找登录ip变化的相关记录。

b8e48c7b00dcd755e38ba54f6d09410b0b54649e

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:注意: 若无数据,请检查配置是否为合法 json;若配置正常,请参考数据采集异常排查文档自助排查

自定义查询与分析

到这一步我们就可以满足客服和 BI 的需求了:查询/关联查询。例如:

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:用户反馈账号信息被篡改了,客服通过日志服务,查询该用户从上次登录到现在的登录信息:login_id : 256525,发现其中有一条登录日志;继续查询登录地址login_id : 256525 | select ip_tp_province(login_ip) as login_province, ip_tp_country(login_ip) as login_country,发现是在国外登录的,因此很有可能该用户账号泄漏或被攻破了。

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:用户反馈自己的账号被限制登录了,客服通过日志服务,查询该用户限制登录前的相关登录信息:login_id : 256525 | select ip_tp_province(login_ip) as login_province, login_result, count(1) as total group by (login_province,login_result) order by total desc limit 100,发现该用户在多个省异常登录失败了很多次。

d47e62d2b349aca45e42305ed6714efbe5ed61d9在配置页面中输入 binlog 采集配置,如下:查询相关使用帮助参见日志服务查询

用户登录大盘

现在我们来搭建 CEO 要的大盘,先准备一些基础的统计信息:

统计一天的 UV&PV

select count(distinct(usr_id)) as uv, count(1) as pv

查看登录设备分布

select dev_type, count(1) as count group by dev_type

每5分钟统计 UV&PV 分布

select count(1) as uv, count(distinct(usr_id)) as pv, from_unixtime( __time__ - __time__ % 300) as time group by __time__ - __time__ % 300 order by time limit 1440

统计地理位置分布

由于原始的数据中没有用户登录的地理位置分布信息,但我们可以通过ip地址定位到用户登录的省市,这里我们使用日志服务自带的ip地址转换函数(具体参见分析语法IP识别函数章节)

统计 top10 的 city(使用 ip_to_city)

select ip_to_city(login_ip) as login_city, count(1) as count group by login_city order by count desc limit 10

统计省份分布(使用 ip_tp_province)

select ip_tp_province(login_ip) as login_province, count(1) as count group by login_province order by count desc limit 100

用户登录大盘搭建

根据上一节的统计结果,我们搭建出了用户登录信息的仪表盘,可以向 CEO 汇报了。

d47e62d2b349aca45e42305ed6714efbe5ed61d9仪表盘搭建参见日志服务仪表盘设置

cdd3a771e7c1b4ce05971544d0a103bd29b121c6

异常登录告警

异常登录都会有误判的可能性,因此正常情况下会有少部分异常登录的情况,但异常登录占比要小于1%。这里我们为用户登录设置一个异常登录的告警:若当异常登录占总登录的1%则触发告警。

SELECT sum( CASE WHEN ip_tp_province(login_ip)!=ip_tp_province(old_login_ip) then 1 ELSE 0 end ) *1.0 / count(1) as abnormal_login_percentage

将该查询存为快速查询 abnormal_login,并设置告警。

d47e62d2b349aca45e42305ed6714efbe5ed61d9告警设置参见日志服务告警设置

2d03f38728c5c9eca6df4d88056a723a03988836

数据备份

用户登录数据,一般建议在日志服务存储一段时间(30天、半年、1年等)用于实时的查询和分析,但对于历史数据还需要保存下来,便于后续的审计、大数据挖掘与分析等。这里我们使用日志服务的投递功能,将数据投递到 OSS 进行长期的归档存储。审计员来了想看多少年前的数据都有!

d4c6beb50d13a5cbb91c8e16e73af78c761c823f


原文发布时间为:2018-05-2

本文作者:元乙

本文来自云栖社区合作伙伴“数据和云”,了解相关信息可以关注“数据和云”。



相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
存储 SQL 关系型数据库
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log、原理、写入过程;binlog与redolog区别、update语句的执行流程、两阶段提交、主从复制、三种日志的使用场景;查询日志、慢查询日志、错误日志等其他几类日志
105 35
MySQL日志详解——日志分类、二进制日志bin log、回滚日志undo log、重做日志redo log
|
10天前
|
SQL 关系型数据库 MySQL
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
27 8
|
2月前
|
监控 关系型数据库 MySQL
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
57 22
|
2月前
|
Java 关系型数据库 MySQL
MySQL 分库分表方案
本文总结了数据库分库分表的相关概念和实践,针对单张表数据量过大及增长迅速的问题,介绍了垂直和水平切分的方式及其适用场景。文章分析了分库分表后可能面临的事务支持、多库结果集合并、跨库join等问题,并列举了几种常见的开源分库分表中间件。最后强调了不建议水平分库分表的原因,帮助读者在规划时规避潜在问题。
239 20
|
2月前
|
SQL 关系型数据库 MySQL
MySQL事务日志-Undo Log工作原理分析
事务的持久性是交由Redo Log来保证,原子性则是交由Undo Log来保证。如果事务中的SQL执行到一半出现错误,需要把前面已经执行过的SQL撤销以达到原子性的目的,这个过程也叫做"回滚",所以Undo Log也叫回滚日志。
112 7
MySQL事务日志-Undo Log工作原理分析
|
2月前
|
关系型数据库 MySQL 数据库
mysql慢查询每日汇报与分析
通过启用慢查询日志、提取和分析慢查询日志,可以有效识别和优化数据库中的性能瓶颈。结合适当的自动化工具和优化措施,可以显著提高MySQL数据库的性能和稳定性。希望本文的详解和示例能够为数据库管理人员提供有价值的参考,帮助实现高效的数据库管理。
52 11
|
3月前
|
存储 缓存 关系型数据库
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
|
1月前
|
缓存 NoSQL 关系型数据库
MySQL原理简介—4.深入分析Buffer Pool
本文介绍了MySQL的Buffer Pool机制,包括其作用、配置方法及内部结构。Buffer Pool是MySQL用于缓存磁盘数据页的关键组件,能显著提升数据库读写性能。默认大小为128MB,可根据服务器配置调整(如32GB内存可设为2GB)。它通过free链表管理空闲缓存页,flush链表记录脏页,并用LRU链表区分冷热数据以优化淘汰策略。此外,还探讨了多Buffer Pool实例、chunk动态调整等优化并发性能的方法,以及如何通过`show engine innodb status`查看Buffer Pool状态。关键词:MySQL内存数据更新机制。
|
3月前
|
SQL 关系型数据库 MySQL
数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog
《数据库灾难应对:MySQL误删除数据的救赎之道,技巧get起来!之binlog》介绍了如何利用MySQL的二进制日志(Binlog)恢复误删除的数据。主要内容包括: 1. **启用二进制日志**:在`my.cnf`中配置`log-bin`并重启MySQL服务。 2. **查看二进制日志文件**:使用`SHOW VARIABLES LIKE 'log_%';`和`SHOW MASTER STATUS;`命令获取当前日志文件及位置。 3. **创建数据备份**:确保在恢复前已有备份,以防意外。 4. **导出二进制日志为SQL语句**:使用`mysqlbinlog`
137 2
|
3月前
|
存储 SQL 关系型数据库
mysql 的ReLog和BinLog区别
MySQL中的重做日志和二进制日志是确保数据库稳定性和可靠性的关键组件。重做日志主要用于事务的持久性和原子性,通过记录数据页的物理修改信息来恢复未提交的事务;而二进制日志记录SQL语句的逻辑变化,支持数据复制、恢复和审计。两者在写入时机、存储方式及配置参数等方面存在显著差异。
101 6