一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析 1. 问题出现 2. 问题原因 3. 问题解决 4. 问题结论 相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

一个相同查询在不同 RDS for MySQL 实例上性能差异的案例分析

1. 问题出现

2. 问题原因

3. 问题解决

4. 问题结论



相同查询在数据量相近的情况下在不同 RDS for MySQL 实例上有不同的性能表现,容易引发用户对 RDS for MySQL 实例的性能差异性的疑虑,本文分享下近期碰到的一个原因比较隐蔽但很常见的案例。

1. 问题出现

一个用户的下述查询在 RDS for MySQL 实例 A 上执行需要  30+ 毫秒 ,而在 RDS for MySQL 实例 B 执行需要  12+ 秒  

SELECT A.PayId, A.sourceType, 
A.txnTime, A.txnEndTime, A.invid, A.payStatus, 
A.invstatus makeinvoicestatus, A.createTime, B.invstatus invstatus, F.returncode returncode
FROM Pay A
LEFT JOIN 
(
  SELECT  M.invstatus invstatus,  M.PayId PayId,   M.invid invid
  FROM  inv_msg M
  WHERE M.sourcetype != '03'
) B ON A.PayId = B.PayId
LEFT JOIN 
(
  SELECT C.invid invoiceids,  C.returncode, C.creatime
  FROM inv_detail C,
    (
      SELECT D.invid invoiceids, max(D.creatime) creatime
      FROM inv_detail D
      GROUP BY  D.invid
    ) E
  WHERE C.invid = E.invoiceids
  AND C.creatime = E.creatime
) F ON B.invid = F.invoiceids
WHERE A.deleteStatus = 0
AND A.payStatus IN ( '904', '905', '906', '907','908','909' )
AND A.sourceType IN ('01', '02')
ORDER BY txnTime DESC
LIMIT 0,10;​


2. 问题原因

排查 SQL 在 RDS for MySQL 实例 A 和 B 上的执行计划,发现不一致。
执行时间长 - A

id	select_type	table		type	possible_keys			key			key_len		ref				rows	Extra
1	PRIMARY	    A	    	ALL		payStatus,sourceType	NULL		NULL		NULL			26427	Using where; Using temporary; Using filesort
1	PRIMARY	    <derived2>	ALL		NULL					NULL		NULL		NULL			8737	Using where; Using join buffer (Block Nested Loop)
1	PRIMARY	    <derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid			10		NULL
3	DERIVED	    <derived4>	ALL		NULL					NULL		NULL		NULL			10694	NULL
3	DERIVED	    C			ref		invid					invid		8			F.invoiceids	1		Using where
4	DERIVED	    D			index	invid					invid		8			NULL			10694	NULL
2	DERIVED	    M			ALL		NULL					NULL		NULL		NULL			8737	Using where


执行时间短 - B

id	select_type	table		type	possible_keys			key			key_len		ref							rows	Extra
1	PRIMARY		A			index	payStatus,sourceType	txnTime		6			NULL						1		Using where
1	PRIMARY		<derived2>	ref		<auto_key1>				<auto_key1>	8			pc_vqgc_0000.A.unionPayId	15		NULL
1	PRIMARY		<derived3>	ref		<auto_key0>				<auto_key0>	8			B.invid						10		NULL
3	DERIVED		<derived4>	ALL		NULL					NULL		NULL		NULL						10506	NULL
3	DERIVED		C			ref		invid					invid		8			F.invoiceids				1		Using where
4	DERIVED		D			index	invid					invid		8			NULL						10506	NULL
2	DERIVED		M			ALL		sourcetype				NULL		NULL		NULL						8928	Using where


 
从执行计划对比看问题出现在 表 A 和 中间表 B 关联这步
执行计划 A 的 Extra 信息显示  Using join buffer (Block Nested Loop),说明如果选择单纯的 Nested Loop Join 成本会很高(在内层循环无法使用索引的场景下,成本是 O(Rn x Sn))。
优化器为了提高效率,因此选择了 Block Nested Loop。
对比执行计划 B,内层使用的索引是 MySQL 自动创建的(auto_key1),检查优化器开关配置是否有区别,以防万一。
 
// 检查优化器开关配置
show global variables like 'optimizer_switch' \G

*************************** 1. row ***************************
Variable_name: optimizer_switch
        Value: index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on,engine_condition_pushdown=on,index_condition_pushdown=on,mrr=on,mrr_cost_based=on,block_nested_loop=on,batched_key_access=off,materialization=on,semijoin=on,loosescan=on,firstmatch=on,subquery_materialization_cost_based=on,use_index_extensions=on

// 输出格式化后
index_merge=on
index_merge_union=on
index_merge_sort_union=on
index_merge_intersection=on
engine_condition_pushdown=on
index_condition_pushdown=on
mrr=on
mrr_cost_based=on
block_nested_loop=on
batched_key_access=off
materialization=on
semijoin=on
loosescan=on
firstmatch=on
subquery_materialization_cost_based=on
use_index_extensions=on
 
对比两个实例优化器开关配置相同,且 materialization 和 subquery_materialization_cost_based 都已经打开, 加之执行计划 A 中有物化表的使用,因此排除掉优化器开关配置问题。
 
此时问题就比较明朗了, 应该是关联的两个字段类型不匹配,导致无法通过索引物化临时表的关联字段来使用 Nested Loop Join
 
带着上面的怀疑检查下两个实例的表 Pay 和 inv_msg 的关联字段 PayId 的字段类型。
// ========= 执行快 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT, `payid` bigint(20) NOT NULL, ...... `invoicestatus` varchar(2) NOT NULL DEFAULT '0', `sourcetype` varchar(200) NOT NULL', PRIMARY KEY (`invoiceid`), KEY `unionpayid` (`unionpayid`) USING BTREE, KEY `invoicestatus` (`invoicestatus`) USING BTREE, KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8
// ========= 执行慢 ========= 
// 表 pay
CREATE TABLE `pay` (
  `PayId` bigint(20) NOT NULL AUTO_INCREMENT,
  `companyId` bigint(20) DEFAULT NULL,
  .......
  `txnEndTime` datetime DEFAULT NULL,
  `deleteStatus` varchar(255) DEFAULT '0',
  PRIMARY KEY (`unionPayId`),
  KEY `companyId` (`companyId`) USING BTREE,
  KEY `invid` (`invId`) USING BTREE,
  KEY `payStatus` (`payStatus`) USING BTREE,
  KEY `sourceType` (`sourceType`) USING BTREE,
  KEY `txnTime` (`txnTime`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=24906 DEFAULT CHARSET=utf8

// 表 inv_msg
CREATE TABLE `inv_msg ` (
`invid` bigint(20) NOT NULL AUTO_INCREMENT, `payid` varchar(20) NOT NULL, ...... `invoicestatus` varchar(2) NOT NULL DEFAULT '0', `sourcetype` varchar(200) NOT NULL', PRIMARY KEY (`invoiceid`), KEY `unionpayid` (`unionpayid`) USING BTREE, KEY `invoicestatus` (`invoicestatus`) USING BTREE, KEY `sourcetype` (`sourcetype`,`unionpayid`) USING BTREE ) ENGINE=InnoDB AUTO_INCREMENT=8897 DEFAULT CHARSET=utf8
 
可以看到 payId 字段在执行快场景下 2 个表都是 big int 类型;而在执行慢的场景下,2个表的字段类型分别为 big int 和 varchar,导致执行计划选择了对无法使用索引场景优化的 Block Netsted Loop。

3. 问题解决

理清问题的根源,就有了针对性的方法。
建议用户修改 表 inv_msg 的字段 payid 类型为 big int not null,重新收集统计信息后问题解决。
// 业务低峰期执行
alter table inv_msg algorithm=copy, lock=shared, modify payid bigint not null;  

// 重新收集统计信息
analyze table inv_msg;


4. 问题结论

  • 需要严格遵守规范进行开发工作。

  • 用户 DBA 应该进行 SQL 审核工作。
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
2月前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
141 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
2月前
|
算法 关系型数据库 MySQL
join查询可以⽆限叠加吗?MySQL对join查询有什么限制吗?
大家好,我是 V 哥。本文详细探讨了 MySQL 中 `JOIN` 查询的限制及其优化方法。首先,`JOIN` 查询不能无限叠加,存在资源(CPU、内存、磁盘 I/O)、性能和语法等方面的限制。过多的 `JOIN` 操作会导致数据库性能急剧下降。其次,介绍了三种常见的 `JOIN` 查询算法:嵌套循环连接(NLJ)、索引嵌套连接(INL)和基于块的嵌套循环连接(BNL),并分析了它们的触发条件和性能特点。最后,分享了优化 `JOIN` 查询的方法,包括 SQL 语句优化、索引优化、数据库配置调整等。关注 V 哥,了解更多技术干货,点赞👍支持,一起进步!
|
4月前
|
SQL 关系型数据库 MySQL
【MySQL基础篇】多表查询(隐式/显式内连接、左/右外连接、自连接查询、联合查询、标量/列/行/表子查询)
本文详细介绍了MySQL中的多表查询,包括多表关系、隐式/显式内连接、左/右外连接、自连接查询、联合查询、标量/列/行/表子查询及其实现方式,一文全面读懂多表联查!
【MySQL基础篇】多表查询(隐式/显式内连接、左/右外连接、自连接查询、联合查询、标量/列/行/表子查询)
|
4月前
|
SQL 关系型数据库 MySQL
MySQL 窗口函数详解:分析性查询的强大工具
MySQL 窗口函数从 8.0 版本开始支持,提供了一种灵活的方式处理 SQL 查询中的数据。无需分组即可对行集进行分析,常用于计算排名、累计和、移动平均值等。基本语法包括 `function_name([arguments]) OVER ([PARTITION BY columns] [ORDER BY columns] [frame_clause])`,常见函数有 `ROW_NUMBER()`, `RANK()`, `DENSE_RANK()`, `SUM()`, `AVG()` 等。窗口框架定义了计算聚合值时应包含的行。适用于复杂数据操作和分析报告。
226 11
|
4月前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
98 8
|
3月前
|
缓存 关系型数据库 MySQL
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
704 0
|
18天前
|
关系型数据库 MySQL Java
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
|
23天前
|
关系型数据库 MySQL 数据库连接
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
202 82
|
3月前
|
关系型数据库 MySQL 数据库连接
数据库连接工具连接mysql提示:“Host ‘172.23.0.1‘ is not allowed to connect to this MySQL server“
docker-compose部署mysql8服务后,连接时提示不允许连接问题解决
|
26天前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等