仅使用NumPy完成卷积神经网络CNN的搭建(附Python代码)

简介: 现有的Caffe、TensorFlow等工具箱已经很好地实现CNN模型,但这些工具箱需要的硬件资源比较多,不利于初学者实践和理解。因此,本文教大家如何仅使用NumPy来构建卷积神经网络(Convolutional Neural Network , CNN)模型,具体实现了卷积层、ReLU激活函数层以及最大池化层(max pooling),代码简单,讲解详细。

       目前网络上存在很多编译好的机器学习、深度学习工具箱,在某些情况下,直接调用已经搭好的模型可能是非常方便且有效的,比如Caffe、TensorFlow工具箱,但这些工具箱需要的硬件资源比较多,不利于初学者实践和理解。因此,为了更好的理解并掌握相关知识,最好是能够自己编程实践下。本文将展示如何使用NumPy来构建卷积神经网络(Convolutional Neural Network , CNN)。
       CNN是较早提出的一种神经网络,直到近年来才变得火热,可以说是计算机视觉领域中应用最多的网络。一些工具箱中已经很好地实现CNN模型,相关的库函数已经完全编译好,开发人员只需调用现有的模块即可完成模型的搭建,避免了实现的复杂性。但实际上,这样会使得开发人员不知道其中具体的实现细节。有些时候,数据科学家必须通过一些细节来提升模型的性能,但这些细节是工具箱不具备的。在这种情况下,唯一的解决方案就是自己编程实现一个类似的模型,这样你对实现的模型会有最高级别的控制权,同时也能更好地理解模型每步的处理过程。
       本文将仅使用NumPy实现CNN网络,创建三个层模块,分别为卷积层(Conv)、ReLu激活函数和最大池化(max pooling)。

1.读取输入图像

       以下代码将从skimage Python库中读取已经存在的图像,并将其转换为灰度图:

1.  import skimage.data  
2.  # Reading the image  
3.  img = skimage.data.chelsea()  
4.  # Converting the image into gray.  
5.  img = skimage.color.rgb2gray(img)js
AI 代码解读

       读取图像是第一步,下一步的操作取决于输入图像的大小。将图像转换为灰度图如下所示:

1

2.准备滤波器

       以下代码为第一个卷积层Conv准备滤波器组(Layer 1,缩写为l1,下同):

1.  l1_filter = numpy.zeros((2,3,3))
AI 代码解读

       根据滤波器的数目和每个滤波器的大小来创建零数组。上述代码创建了2个3x3大小的滤波器,(2,3,3)中的元素数字分别表示2:滤波器的数目(num_filters)、3:表示滤波器的列数、3:表示滤波器的行数。由于输入图像是灰度图,读取后变成2维图像矩阵,因此滤波器的尺寸选择为2维阵列,舍去了深度。如果图像是彩色图(具有3个通道,分别为RGB),则滤波器的大小必须为(3,3,3),最后一个3表示深度,上述代码也要更改,变成(2,3,3,3)。
       滤波器组的大小由自己指定,但没有给定滤波器中具体的数值,一般采用随机初始化。下列一组值可以用来检查垂直和水平边缘:

1.  l1_filter[0, :, :] = numpy.array([[[-1, 0, 1],   
2.                                     [-1, 0, 1],   
3.                                     [-1, 0, 1]]])  
4.  l1_filter[1, :, :] = numpy.array([[[1,   1,  1],   
5.                                     [0,   0,  0],   
6.                                     [-1, -1, -1]]]) 
AI 代码解读

3.卷积层(Conv Layer)

       构建好滤波器后,接下来就是与输入图像进行卷积操作。下面代码使用conv函数将输入图像与滤波器组进行卷积:

1.  l1_feature_map = conv(img, l1_filter) 
AI 代码解读

       conv函数只接受两个参数,分别为输入图像、滤波器组:

1.  def conv(img, conv_filter):  
2.      if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number of image channels matches the filter depth.  
3.          if img.shape[-1] != conv_filter.shape[-1]:  
4.              print("Error: Number of channels in both image and filter must match.")  
5.              sys.exit()  
6.      if conv_filter.shape[1] != conv_filter.shape[2]: # Check if filter dimensions are equal.  
7.          print('Error: Filter must be a square matrix. I.e. number of rows and columns must match.')  
8.          sys.exit()  
9.      if conv_filter.shape[1]%2==0: # Check if filter diemnsions are odd.  
10.         print('Error: Filter must have an odd size. I.e. number of rows and columns must be odd.')  
11.         sys.exit()  
12.   
13.     # An empty feature map to hold the output of convolving the filter(s) with the image.  
14.     feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,   
15.                                 img.shape[1]-conv_filter.shape[1]+1,   
16.                                 conv_filter.shape[0]))  
17.   
18.     # Convolving the image by the filter(s).  
19.     for filter_num in range(conv_filter.shape[0]):  
20.         print("Filter ", filter_num + 1)  
21.         curr_filter = conv_filter[filter_num, :] # getting a filter from the bank.  
22.         """  
23.         Checking if there are mutliple channels for the single filter. 
24.         If so, then each channel will convolve the image. 
25.         The result of all convolutions are summed to return a single feature map. 
26.         """  
27.         if len(curr_filter.shape) > 2:  
28.             conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array holding the sum of all feature maps.  
29.             for ch_num in range(1, curr_filter.shape[-1]): # Convolving each channel with the image and summing the results.  
30.                 conv_map = conv_map + conv_(img[:, :, ch_num],   
31.                                   curr_filter[:, :, ch_num])  
32.         else: # There is just a single channel in the filter.  
33.             conv_map = conv_(img, curr_filter)  
34.         feature_maps[:, :, filter_num] = conv_map # Holding feature map with the current filter.
35.      return feature_maps # Returning all feature maps. 
AI 代码解读

       该函数首先确保每个滤波器的深度等于图像通道的数目,代码如下。if语句首先检查图像与滤波器是否有一个深度通道,若存在,则检查其通道数是否相等,如果匹配不成功,则报错。

1.  if len(img.shape) > 2 or len(conv_filter.shape) > 3: # Check if number of image channels matches the filter depth.  
2.          if img.shape[-1] != conv_filter.shape[-1]:  
3.              print("Error: Number of channels in both image and filter must match.")  
AI 代码解读

       此外,滤波器的大小应该是奇数,且每个滤波器的大小是相等的。这是根据下面两个if条件语块来检查的。如果条件不满足,则程序报错并退出。

1.  if conv_filter.shape[1] != conv_filter.shape[2]: # Check if filter dimensions are equal.  
2.      print('Error: Filter must be a square matrix. I.e. number of rows and columns must match.')  
3.      sys.exit()  
4.  if conv_filter.shape[1]%2==0: # Check if filter diemnsions are odd.  
5.      print('Error: Filter must have an odd size. I.e. number of rows and columns must be odd.')  
6.      sys.exit()  
AI 代码解读

       上述条件都满足后,通过初始化一个数组来作为滤波器的值,通过下面代码来指定滤波器的值:

1.  # An empty feature map to hold the output of convolving the filter(s) with the image.  
2.  feature_maps = numpy.zeros((img.shape[0]-conv_filter.shape[1]+1,   
3.                              img.shape[1]-conv_filter.shape[1]+1,   
4.                              conv_filter.shape[0])) 
AI 代码解读

       由于没有设置步幅(stride)或填充(padding),默认为步幅设置为1,无填充。那么卷积操作后得到的特征图大小为(img_rows-filter_rows+1, image_columns-filter_columns+1, num_filters),即输入图像的尺寸减去滤波器的尺寸后再加1。注意到,每个滤波器都会输出一个特征图。

1.   # Convolving the image by the filter(s).  
2.      for filter_num in range(conv_filter.shape[0]):  
3.          print("Filter ", filter_num + 1)  
4.          curr_filter = conv_filter[filter_num, :] # getting a filter from the bank.  
5.          """  
6.          Checking if there are mutliple channels for the single filter. 
7.          If so, then each channel will convolve the image. 
8.          The result of all convolutions are summed to return a single feature map. 
9.          """  
10.         if len(curr_filter.shape) > 2:  
11.             conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array holding the sum of all feature maps.  
12.             for ch_num in range(1, curr_filter.shape[-1]): # Convolving each channel with the image and summing the results.  
13.                 conv_map = conv_map + conv_(img[:, :, ch_num],   
14.                                   curr_filter[:, :, ch_num])  
15.         else: # There is just a single channel in the filter.  
16.             conv_map = conv_(img, curr_filter)  
17.         feature_maps[:, :, filter_num] = conv_map # Holding feature map with the current filter.  
AI 代码解读

循环遍历滤波器组中的每个滤波器后,通过下面代码更新滤波器的状态:

1.  curr_filter = conv_filter[filter_num, :] # getting a filter from the bank.  
AI 代码解读

       如果输入图像不止一个通道,则滤波器必须具有同样的通道数目。只有这样,卷积过程才能正常进行。最后将每个滤波器的输出求和作为输出特征图。下面的代码检测输入图像的通道数,如果图像只有一个通道,那么一次卷积即可完成整个过程:

1.  if len(curr_filter.shape) > 2:  
2.       conv_map = conv_(img[:, :, 0], curr_filter[:, :, 0]) # Array holding the sum of all feature map 
3.       for ch_num in range(1, curr_filter.shape[-1]): # Convolving each channel with the image and summing the results.  
4.          conv_map = conv_map + conv_(img[:, :, ch_num],   
5.                                    curr_filter[:, :, ch_num])  
6.  else: # There is just a single channel in the filter.  
7.      conv_map = conv_(img, curr_filter) 
AI 代码解读

       上述代码中conv_函数与之前的conv函数不同,函数conv只接受输入图像和滤波器组这两个参数,本身并不进行卷积操作,它只是设置用于conv_函数执行卷积操作的每一组输入滤波器。下面是conv_函数的实现代码:

1.  def conv_(img, conv_filter):  
2.      filter_size = conv_filter.shape[0]  
3.      result = numpy.zeros((img.shape))  
4.      #Looping through the image to apply the convolution operation.  
5.      for r in numpy.uint16(numpy.arange(filter_size/2,   
6.                            img.shape[0]-filter_size/2-2)):  
7.          for c in numpy.uint16(numpy.arange(filter_size/2, img.shape[1]-filter_size/2-2)):  
8.              #Getting the current region to get multiplied with the filter.  
9.              curr_region = img[r:r+filter_size, c:c+filter_size]  
10.             #Element-wise multipliplication between the current region and the filter.  
11.             curr_result = curr_region * conv_filter  
12.             conv_sum = numpy.sum(curr_result) #Summing the result of multiplication.  
13.             result[r, c] = conv_sum #Saving the summation in the convolution layer feature map.  
14.               
15.     #Clipping the outliers of the result matrix.  
16.     final_result = result[numpy.uint16(filter_size/2):result.shape[0]-numpy.uint16(filter_size/2),   
17.                           numpy.uint16(filter_size/2):result.shape[1]-numpy.uint16(filter_size/2)]  
18.     return final_result  
AI 代码解读

每个滤波器在图像上迭代卷积的尺寸相同,通过以下代码实现:

1.  curr_region = img[r:r+filter_size, c:c+filter_size]  
AI 代码解读

之后,在图像区域矩阵和滤波器之间对位相乘,并将结果求和以得到单值输出:

1.  #Element-wise multipliplication between the current region and the filter.  
2.  curr_result = curr_region * conv_filter  
3.  conv_sum = numpy.sum(curr_result) #Summing the result of multiplication.  
4.  result[r, c] = conv_sum #Saving the summation in the convolution layer feature map.  
AI 代码解读

       输入图像与每个滤波器卷积后,通过conv函数返回特征图。下图显示conv层返回的特征图(由于l1卷积层的滤波器参数为(2,3,3),即2个3x3大小的卷积核,最终输出2个特征图):

2
卷积后图像


卷积层的后面一般跟着激活函数层,本文采用ReLU激活函数。

4.ReLU激活函数层

       ReLU层将ReLU激活函数应用于conv层输出的每个特征图上,根据以下代码行调用ReLU激活函数:

l1_feature_map_relu = relu(l1_feature_map)
AI 代码解读

ReLU激活函数(ReLU)的具体实现代码如下:

1.  def relu(feature_map):  
2.      #Preparing the output of the ReLU activation function.  
3.      relu_out = numpy.zeros(feature_map.shape)  
4.      for map_num in range(feature_map.shape[-1]):  
5.          for r in numpy.arange(0,feature_map.shape[0]):  
6.              for c in numpy.arange(0, feature_map.shape[1]):  
7.                  relu_out[r, c, map_num] = numpy.max(feature_map[r, c, map_num], 0)  
AI 代码解读

       ReLU思想很简单,只是将特征图中的每个元素与0进行比较,若大于0,则保留原始值。否则将其设置为0。ReLU层的输出如下图所示:

3
ReLU层输出图像


激活函数层后面一般紧跟池化层,本文采用最大池化(max pooling)。

5.最大池化层

       ReLU层的输出作为最大池化层的输入,根据下面的代码行调用最大池化操作:

1.  l1_feature_map_relu_pool = pooling(l1_feature_map_relu, 2, 2)  
AI 代码解读

最大池化函数(max pooling)的具体实现代码如下:

1.  def pooling(feature_map, size=2, stride=2):  
2.      #Preparing the output of the pooling operation.  
3.      pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/stride),  
4.                              numpy.uint16((feature_map.shape[1]-size+1)/stride),  
5.                              feature_map.shape[-1]))  
6.      for map_num in range(feature_map.shape[-1]):  
7.          r2 = 0  
8.          for r in numpy.arange(0,feature_map.shape[0]-size-1, stride):  
9.              c2 = 0  
10.             for c in numpy.arange(0, feature_map.shape[1]-size-1, stride):  
11.                 pool_out[r2, c2, map_num] = numpy.max(feature_map[r:r+size,  c:c+size])  
12.                 c2 = c2 + 1  
13.             r2 = r2 +1  
AI 代码解读

       该函数接受3个参数,分别为ReLU层的输出,池化掩膜的大小和步幅。首先也是创建一个空数组,用来保存该函数的输出。数组大小根据输入特征图的尺寸、掩膜大小以及步幅来确定。

1.  pool_out = numpy.zeros((numpy.uint16((feature_map.shape[0]-size+1)/stride),  
2.                          numpy.uint16((feature_map.shape[1]-size+1)/stride),  
3.                          feature_map.shape[-1]))  
AI 代码解读

       对每个输入特征图通道都进行最大池化操作,返回该区域中最大的值,代码如下:

pool_out[r2, c2, map_num] = numpy.max(feature_map[r:r+size,  c:c+size])
AI 代码解读

       池化层的输出如下图所示,这里为了显示让其图像大小看起来一样,其实池化操作后图像尺寸远远小于其输入图像。

4
池化层输出图像

6.层堆叠

       以上内容已经实现CNN结构的基本层——conv、ReLU以及max pooling,现在将其进行堆叠使用,代码如下:

1.  # Second conv layer  
2.  l2_filter = numpy.random.rand(3, 5, 5, l1_feature_map_relu_pool.shape[-1])  
3.  print("\n**Working with conv layer 2**")  
4.  l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)  
5.  print("\n**ReLU**")  
6.  l2_feature_map_relu = relu(l2_feature_map)  
7.  print("\n**Pooling**")  
8.  l2_feature_map_relu_pool = pooling(l2_feature_map_relu, 2, 2)  
9.  print("**End of conv layer 2**\n") 
AI 代码解读

       从代码中可以看到,l2表示第二个卷积层,该卷积层使用的卷积核为(3,5,5),即3个5x5大小的卷积核(滤波器)与第一层的输出进行卷积操作,得到3个特征图。后续接着进行ReLU激活函数以及最大池化操作。将每个操作的结果可视化,如下图所示:

5
l2层处理过程可视化图像

1.  # Third conv layer  
2.  l3_filter = numpy.random.rand(1, 7, 7, l2_feature_map_relu_pool.shape[-1])  
3.  print("\n**Working with conv layer 3**")  
4.  l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)  
5.  print("\n**ReLU**")  
6.  l3_feature_map_relu = relu(l3_feature_map)  
7.  print("\n**Pooling**")  
8.  l3_feature_map_relu_pool = pooling(l3_feature_map_relu, 2, 2)  
9.  print("**End of conv layer 3**\n"
AI 代码解读

       从代码中可以看到,l3表示第三个卷积层,该卷积层使用的卷积核为(1,7,7),即1个7x7大小的卷积核(滤波器)与第二层的输出进行卷积操作,得到1个特征图。后续接着进行ReLU激活函数以及最大池化操作。将每个操作的结果可视化,如下图所示:

6
l3层处理过程可视化图像


       神经网络的基本结构是前一层的输出作为下一层的输入,比如l2层接收l1层的输出,l3层接收来l2层的输出,代码如下:
1.  l2_feature_map = conv(l1_feature_map_relu_pool, l2_filter)  
2.  l3_feature_map = conv(l2_feature_map_relu_pool, l3_filter)
AI 代码解读

7.完整代码

       全部代码已经上传至Github上,每层的可视化是使用Matplotlib库实现。

数十款阿里云产品限时折扣中,赶紧点击领劵开始云上实践吧!

作者信息

Ahmed Gad,研究兴趣是深度学习、人工智能和计算机视觉
个人主页:https://www.linkedin.com/in/ahmedfgad/
本文由阿里云云栖社区组织翻译。
文章原标题《Building Convolutional Neural Network using NumPy from Scratch》,译者:海棠,审校:Uncle_LLD。
文章为简译,更为详细的内容,请查看原文

目录
打赏
0
0
0
3
1807
分享
相关文章
|
4天前
|
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
417 8
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
实战指南:通过1688开放平台API获取商品详情数据(附Python代码及避坑指南)
1688作为国内最大的B2B供应链平台,其API为企业提供合法合规的JSON数据源,直接获取批发价、SKU库存等核心数据。相比爬虫方案,官方API避免了反爬严格、数据缺失和法律风险等问题。企业接入1688商品API需完成资质认证、创建应用、签名机制解析及调用接口四步。应用场景包括智能采购系统、供应商评估模型和跨境选品分析。提供高频问题解决方案及安全合规实践,确保数据安全与合法使用。立即访问1688开放平台,解锁B2B数据宝藏!
【Azure Developer】编写Python SDK代码实现从China Azure中VM Disk中创建磁盘快照Snapshot
本文介绍如何使用Python SDK为中国区微软云(China Azure)中的虚拟机磁盘创建快照。通过Azure Python SDK的Snapshot Class,指定`location`和`creation_data`参数,使用`Copy`选项从现有磁盘创建快照。代码示例展示了如何配置Default Azure Credential,并设置特定于中国区Azure的`base_url`和`credential_scopes`。参考资料包括官方文档和相关API说明。
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
从NumPy到Pandas:轻松转换Python数值库与数据处理利器
165 1
NumPy实践宝典:Python高手教你如何轻松玩转数据处理!
【8月更文挑战第22天】NumPy是Python科学计算的核心库,专长于大型数组与矩阵运算,并提供了丰富的数学函数。首先需安装NumPy (`pip install numpy`)。之后可通过创建数组、索引与切片、执行数学与逻辑运算、变换数组形状及类型、计算统计量和进行矩阵运算等操作来实践学习。NumPy的应用范围广泛,从基础的数据处理到图像处理都能胜任,是数据科学领域的必备工具。
91 0
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
147 3
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
168 2
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
134 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
195 10

热门文章

最新文章