基于Keras机器学习库的分类预测

  1. 云栖社区>
  2. 翻译小组>
  3. 博客>
  4. 正文

基于Keras机器学习库的分类预测

【方向】 2018-04-18 08:49:29 浏览3297
展开阅读全文

    在前面的博文中,我们分享了《基于scikit-learn机器学习库的分类预测》,本文将分享Keras机器学习库的分类预测。    

    一旦你在Keras中选择好机器学习模型,就可以用它来预测新的数据实例。初学者经常会有这样的疑问:

如何在Keras中用我自己的模型进行预测?

在本教程中,你将会发现如何在Keras Python库的机器学习模型进行分类和回归预测。文章结构如下:

1.如何构建一个模型,为预测做好准备。

2.如何在Keras库中进行类别和概率预测。

3.如何在Keras库中进行回归预测。

738a4b8df373dc063c96229b6bf9dc519d922994 

一、构建一个模型

在进行预测之前,你必须训练一个最终模型。可以使用k-fold交叉验证或训练/测试数据,对模型进行训练。这样做的目的就是为了评估模型在样本外数据上的表现及其性能,比如新的数据。

你可以在这里了解更多关于如何训练最终模型

网友评论

登录后评论
0/500
评论
【方向】
+ 关注
所属云栖号: 翻译小组