java面试- Java并发编程(十)——线程池(1)

简介: 线程池的作用减少资源的开销 减少了每次创建线程、销毁线程的开销。提高响应速度 每次请求到来时,由于线程的创建已经完成,故可以直接执行任务,因此提高了响应速度。

线程池的作用

  1. 减少资源的开销 
    减少了每次创建线程、销毁线程的开销。

  2. 提高响应速度 
    每次请求到来时,由于线程的创建已经完成,故可以直接执行任务,因此提高了响应速度。

  3. 提高线程的可管理性 
    线程是一种稀缺资源,若不加以限制,不仅会占用大量资源,而且会影响系统的稳定性。 
    因此,线程池可以对线程的创建与停止、线程数量等等因素加以控制,使得线程在一种可控的范围内运行,不仅能保证系统稳定运行,而且方便性能调优。

线程池的实现原理

线程池一般由两种角色构成:多个工作线程 和 一个阻塞队列。

  • 工作线程 
    工作线程是一组已经处在运行中的线程,它们不断地向阻塞队列中领取任务执行。

  • 阻塞队列 
    阻塞队列用于存储工作线程来不及处理的任务。当工作线程都在执行任务时,到来的新任务就只能暂时在阻塞队列中存储。

ThreadPoolExecutor的使用

创建线程池

通过如下代码即可创建一个线程池:

new ThreadPoolExecutor(corePoolSize, maximumPoolSize, keepAliveTime, timeUnit, runnableTaskQueue, handler);
  • 1
  • corePoolSize:基本线程数量 
    它表示你希望线程池达到的一个值。线程池会尽量把实际线程数量保持在这个值上下。

  • maximumPoolSize:最大线程数量 
    这是线程数量的上界。 
    如果实际线程数量达到这个值:

    1. 阻塞队列未满:任务存入阻塞队列等待执行
    2. 阻塞队列已满:调用饱和策略
  • keepAliveTime:空闲线程的存活时间 
    当实际线程数量超过corePoolSize时,若线程空闲的时间超过该值,就会被停止。 
    PS:当任务很多,且任务执行时间很短的情况下,可以将该值调大,提高线程利用率。

  • timeUnit:keepAliveTime的单位

  • runnableTaskQueue:任务队列 
    这是一个存放任务的阻塞队列,可以有如下几种选择: 
    1. ArrayBlockingQueue 
      它是一个由数组实现的阻塞队列,FIFO。
    2. LinkedBlockingQueue 
      它是一个由链表实现的阻塞队列,FIFO。 
      吞吐量通常要高于ArrayBlockingQueue。 
      fixedThreadPool使用的阻塞队列就是它。 
      它是一个无界队列。
    3. SynchronousQueue 
      它是一个没有存储空间的阻塞队列,任务提交给它之后必须要交给一条工作线程处理;如果当前没有空闲的工作线程,则立即创建一条新的工作线程。 
      cachedThreadPool用的阻塞队列就是它。 
      它是一个无界队列。
    4. PriorityBlockingQueue 
      它是一个优先权阻塞队列。
  • handler:饱和策略 
    当实际线程数达到maximumPoolSize,并且阻塞队列已满时,就会调用饱和策略。 
    JDK1.5由四种饱和策略: 
    1. AbortPolicy 
      默认。直接抛异常。
    2. CallerRunsPolicy 
      只用调用者所在的线程执行任务。
    3. DiscardOldestPolicy 
      丢弃任务队列中最久的任务。
    4. DiscardPolicy 
      丢弃当前任务。

提交任务

可以向ThreadPoolExecutor提交两种任务:Callable和Runnable。

  1. Callable 
    该类任务有返回结果,可以抛出异常。 
    通过submit函数提交,返回Future对象。 
    可通过get获取执行结果。

  2. Runnable 
    该类任务只执行,无法获取返回结果,并在执行过程中无法抛异常。 
    通过execute提交。

关闭线程池

关闭线程池有两种方式:shutdown和shutdownNow,关闭时,会遍历所有的线程,调用它们的interrupt函数中断线程。但这两种方式对于正在执行的线程处理方式不同。

  1. shutdown() 
    仅停止阻塞队列中等待的线程,那些正在执行的线程就会让他们执行结束。
  2. shutdownNow() 
    不仅会停止阻塞队列中的线程,而且会停止正在执行的线程。

ThreadPoolExecutor运行机制

当有请求到来时:

  1. 若当前实际线程数量 少于 corePoolSize,即使有空闲线程,也会创建一个新的工作线程;
  2. 若当前实际线程数量处于corePoolSize和maximumPoolSize之间,并且阻塞队列没满,则任务将被放入阻塞队列中等待执行;
  3. 若当前实际线程数量 小于 maximumPoolSize,但阻塞队列已满,则直接创建新线程处理任务;
  4. 若当前实际线程数量已经达到maximumPoolSize,并且阻塞队列已满,则使用饱和策略。

设置合理的线程池大小

任务一般可分为:CPU密集型、IO密集型、混合型,对于不同类型的任务需要分配不同大小的线程池。

  • CPU密集型任务 
    尽量使用较小的线程池,一般为CPU核心数+1。 
    因为CPU密集型任务使得CPU使用率很高,若开过多的线程数,只能增加上下文切换的次数,因此会带来额外的开销。

  • IO密集型任务 
    可以使用稍大的线程池,一般为2*CPU核心数。 
    IO密集型任务CPU使用率并不高,因此可以让CPU在等待IO的时候去处理别的任务,充分利用CPU时间。

  • 混合型任务 
    可以将任务分成IO密集型和CPU密集型任务,然后分别用不同的线程池去处理。 
    只要分完之后两个任务的执行时间相差不大,那么就会比串行执行来的高效。 
    因为如果划分之后两个任务执行时间相差甚远,那么先执行完的任务就要等后执行完的任务,最终的时间仍然取决于后执行完的任务,而且还要加上任务拆分与合并的开销,得不偿失。


相关文章
|
1天前
|
安全 Java
java多线程(一)(火车售票)
java多线程(一)(火车售票)
|
1天前
|
安全 Java 调度
Java并发编程:深入理解线程与锁
【4月更文挑战第18天】本文探讨了Java中的线程和锁机制,包括线程的创建(通过Thread类、Runnable接口或Callable/Future)及其生命周期。Java提供多种锁机制,如`synchronized`关键字、ReentrantLock和ReadWriteLock,以确保并发访问共享资源的安全。此外,文章还介绍了高级并发工具,如Semaphore(控制并发线程数)、CountDownLatch(线程间等待)和CyclicBarrier(同步多个线程)。掌握这些知识对于编写高效、正确的并发程序至关重要。
|
1天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
2天前
|
缓存 分布式计算 监控
Java并发编程:深入理解线程池
【4月更文挑战第17天】在Java并发编程中,线程池是一种非常重要的技术,它可以有效地管理和控制线程的执行,提高系统的性能和稳定性。本文将深入探讨Java线程池的工作原理,使用方法以及在实际开发中的应用场景,帮助读者更好地理解和使用Java线程池。
|
2天前
|
存储 安全 Java
Java中的容器,线程安全和线程不安全
Java中的容器,线程安全和线程不安全
10 1
|
2天前
|
Java 开发者
Java中多线程并发控制的实现与优化
【4月更文挑战第17天】 在现代软件开发中,多线程编程已成为提升应用性能和响应能力的关键手段。特别是在Java语言中,由于其平台无关性和强大的运行时环境,多线程技术的应用尤为广泛。本文将深入探讨Java多线程的并发控制机制,包括基本的同步方法、死锁问题以及高级并发工具如java.util.concurrent包的使用。通过分析多线程环境下的竞态条件、资源争夺和线程协调问题,我们提出了一系列实现和优化策略,旨在帮助开发者构建更加健壮、高效的多线程应用。
3 0
|
3天前
|
缓存 监控 Java
Java并发编程:线程池与任务调度
【4月更文挑战第16天】Java并发编程中,线程池和任务调度是核心概念,能提升系统性能和响应速度。线程池通过重用线程减少创建销毁开销,如`ThreadPoolExecutor`和`ScheduledThreadPoolExecutor`。任务调度允许立即或延迟执行任务,具有灵活性。最佳实践包括合理配置线程池大小、避免过度使用线程、及时关闭线程池和处理异常。掌握这些能有效管理并发任务,避免性能瓶颈。
|
4天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
4天前
|
SQL 安全 Java
Java安全编程:防范网络攻击与漏洞
【4月更文挑战第15天】本文强调了Java安全编程的重要性,包括提高系统安全性、降低维护成本和提升用户体验。针对网络攻击和漏洞,提出了防范措施:使用PreparedStatement防SQL注入,过滤和转义用户输入抵御XSS攻击,添加令牌对抗CSRF,限制文件上传类型和大小以防止恶意文件,避免原生序列化并确保数据完整性。及时更新和修复漏洞是关键。程序员应遵循安全编程规范,保障系统安全。
|
4天前
|
存储 缓存 Java
线程同步的艺术:探索 JAVA 主流锁的奥秘
本文介绍了 Java 中的锁机制,包括悲观锁与乐观锁的并发策略。悲观锁假设多线程环境下数据冲突频繁,访问前先加锁,如 `synchronized` 和 `ReentrantLock`。乐观锁则在访问资源前不加锁,通过版本号或 CAS 机制保证数据一致性,适用于冲突少的场景。锁的获取失败时,线程可以选择阻塞(如自旋锁、适应性自旋锁)或不阻塞(如无锁、偏向锁、轻量级锁、重量级锁)。此外,还讨论了公平锁与非公平锁,以及可重入锁与非可重入锁的特性。最后,提到了共享锁(读锁)和排他锁(写锁)的概念,适用于不同类型的并发访问需求。
35 2