TF-IDF与余弦相似性的应用(二):找出相似文章

简介:

上一次,我用TF-IDF算法自动提取关键词。

今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,"Google新闻"在主新闻下方,还提供多条相似的新闻。

bg2013032001.png

为了找出相似的文章,需要用到"余弦相似性"(cosine similiarity)。下面,我举一个例子来说明,什么是"余弦相似性"。

为了简单起见,我们先从句子着手。

  句子A:我喜欢看电视,不喜欢看电影。

  句子B:我不喜欢看电视,也不喜欢看电影。

请问怎样才能计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

  句子A:我/喜欢/看/电视,不/喜欢/看/电影。

  句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。

  我,喜欢,看,电视,电影,不,也。

第三步,计算词频。

  句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

  句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量。

  句子A:[1, 2, 2, 1, 1, 1, 0]

  句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为0度,意味着方向相同、线段重合;如果夹角为90度,意味着形成直角,方向完全不相似;如果夹角为180度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

bg2013032002.png

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

bg2013032004.png bg2013032003.png

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

bg2013032006.png bg2013032005.png

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

bg2013032007.png

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

bg2013032008.png

余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性"。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为20.3度。

由此,我们就得到了"找出相似文章"的一种算法:

  (1)使用TF-IDF算法,找出两篇文章的关键词;

  (2)每篇文章各取出若干个关键词(比如20个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

  (3)生成两篇文章各自的词频向量;

  (4)计算两个向量的余弦相似度,值越大就表示越相似。

"余弦相似度"是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

下一次,我想谈谈如何在词频统计的基础上,自动生成一篇文章的摘要。

(完)

目录
相关文章
|
4月前
|
算法
TF-IDF算法是什么呢?
TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用于信息检索和文本挖掘的统计方法,用于评估一个词在文档集或一个语料库中的重要程度。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
|
4月前
TF-IDF 怎样将用单词权重的向量表示一个文档
TF-IDF 怎样将用单词权重的向量表示一个文档
27 1
|
算法 数据挖掘 Linux
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
TF-IDF及相似度计算
TF-IDF:衡量某个词对文章的重要性由TF和IDF组成 TF:词频(因素:某词在同一文章中出现次数) IDF:反文档频率(因素:某词是否在不同文章中出现) TF-IDF = TF*IDF TF :一个单词在一篇文章出现次数越多越重要 IDF: 每篇文章都出现的单词(如的,你,我,他) ,越不重要
252 0
TF-IDF及相似度计算
|
算法
TF-IDF算法
TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率).
151 0
TF-IDF算法
|
搜索推荐 索引
空间向量模型和tf-idf
空间向量模型和tf-idf
291 0
空间向量模型和tf-idf
|
机器学习/深度学习 算法
TF之NN之回归预测:利用NN算法(RelU)实现根据三个自变量预测一个因变量的回归问题
TF之NN之回归预测:利用NN算法(RelU)实现根据三个自变量预测一个因变量的回归问题
TF之NN之回归预测:利用NN算法(RelU)实现根据三个自变量预测一个因变量的回归问题
|
机器学习/深度学习 算法 TensorFlow
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
TF之NN:利用DNN算法(SGD+softmax+cross_entropy)对mnist手写数字图片识别训练集(TF自带函数下载)实现87.4%识别
|
算法框架/工具
Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
Keras之MLP:利用MLP【Input(8)→(12)(relu)→O(sigmoid+二元交叉)】模型实现预测新数据(利用糖尿病数据集的八个特征实现二分类预测
|
机器学习/深度学习 数据挖掘 算法框架/工具
Keras之DNN:基于Keras(sigmoid+binary_crossentropy+predict_proba)利用DNN实现分类预测概率——DIY二分类数据集&预测新数据点
Keras之DNN:基于Keras(sigmoid+binary_crossentropy+predict_proba)利用DNN实现分类预测概率——DIY二分类数据集&预测新数据点
Keras之DNN:基于Keras(sigmoid+binary_crossentropy+predict_proba)利用DNN实现分类预测概率——DIY二分类数据集&预测新数据点

热门文章

最新文章