Linux之TCPIP内核参数优化

简介:

本文以Ubuntu 12.04 LTS Desktop (x64)默认配置为例(机器的内存为4GB),推荐先阅读《TCP连接的状态与关闭方式,及其对Server与Client的影响》《Windows系统下的TCP参数优化》,以了解TCP优化的相关知识。


/proc/sys/net目录

  所有的TCP/IP参数都位于/proc/sys/net目录下(请注意,对/proc/sys/net目录下内容的修改都是临时的,任何修改在系统重启后都会丢失),例如下面这些重要的参数:

参数(路径+文件)

描述

默认值

优化值

/proc/sys/net/core/rmem_default

默认的TCP数据接收窗口大小(字节)。

229376

256960

/proc/sys/net/core/rmem_max

最大的TCP数据接收窗口(字节)。

131071

513920

/proc/sys/net/core/wmem_default

默认的TCP数据发送窗口大小(字节)。

229376

256960

/proc/sys/net/core/wmem_max

最大的TCP数据发送窗口(字节)。

131071

513920

/proc/sys/net/core/netdev_max_backlog

在每个网络接口接收数据包的速率比内核处理这些包的速率快时,允许送到队列的数据包的最大数目。

1000

2000

/proc/sys/net/core/somaxconn

定义了系统中每一个端口最大的监听队列的长度,这是个全局的参数。

128

2048

/proc/sys/net/core/optmem_max

表示每个套接字所允许的最大缓冲区的大小。

20480

81920

/proc/sys/net/ipv4/tcp_mem

确定TCP栈应该如何反映内存使用,每个值的单位都是内存页(通常是4KB)。第一个值是内存使用的下限;第二个值是内存压力模式开始对缓冲区使用应用压力的上限;第三个值是内存使用的上限。在这个层次上可以将报文丢弃,从而减少对内存的使用。对于较大的BDP可以增大这些值(注意,其单位是内存页而不是字节)。

94011  125351  188022

131072  262144  524288

/proc/sys/net/ipv4/tcp_rmem

为自动调优定义socket使用的内存。第一个值是为socket接收缓冲区分配的最少字节数;第二个值是默认值(该值会被rmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是接收缓冲区空间的最大字节数(该值会被rmem_max覆盖)。

4096  87380  4011232

8760  256960  4088000

/proc/sys/net/ipv4/tcp_wmem

为自动调优定义socket使用的内存。第一个值是为socket发送缓冲区分配的最少字节数;第二个值是默认值(该值会被wmem_default覆盖),缓冲区在系统负载不重的情况下可以增长到这个值;第三个值是发送缓冲区空间的最大字节数(该值会被wmem_max覆盖)。

4096  16384  4011232

8760  256960  4088000

/proc/sys/net/ipv4/tcp_keepalive_time

TCP发送keepalive探测消息的间隔时间(秒),用于确认TCP连接是否有效。

7200

1800

/proc/sys/net/ipv4/tcp_keepalive_intvl

探测消息未获得响应时,重发该消息的间隔时间(秒)。

75

30

/proc/sys/net/ipv4/tcp_keepalive_probes

在认定TCP连接失效之前,最多发送多少个keepalive探测消息。

9

3

/proc/sys/net/ipv4/tcp_sack

启用有选择的应答(1表示启用),通过有选择地应答乱序接收到的报文来提高性能,让发送者只发送丢失的报文段,(对于广域网通信来说)这个选项应该启用,但是会增加对CPU的占用。

1

1

/proc/sys/net/ipv4/tcp_fack

启用转发应答,可以进行有选择应答(SACK)从而减少拥塞情况的发生,这个选项也应该启用。

1

1

/proc/sys/net/ipv4/tcp_timestamps

TCP时间戳(会在TCP包头增加12个字节),以一种比重发超时更精确的方法(参考RFC 1323)来启用对RTT 的计算,为实现更好的性能应该启用这个选项。

1

1

/proc/sys/net/ipv4/tcp_window_scaling

启用RFC 1323定义的window scaling,要支持超过64KB的TCP窗口,必须启用该值(1表示启用),TCP窗口最大至1GB,TCP连接双方都启用时才生效。

1

1

/proc/sys/net/ipv4/tcp_syncookies

表示是否打开TCP同步标签(syncookie),内核必须打开了CONFIG_SYN_COOKIES项进行编译,同步标签可以防止一个套接字在有过多试图连接到达时引起过载。

1

1

/proc/sys/net/ipv4/tcp_tw_reuse

表示是否允许将处于TIME-WAIT状态的socket(TIME-WAIT的端口)用于新的TCP连接 。

0

1

/proc/sys/net/ipv4/tcp_tw_recycle

能够更快地回收TIME-WAIT套接字。

0

1

/proc/sys/net/ipv4/tcp_fin_timeout

对于本端断开的socket连接,TCP保持在FIN-WAIT-2状态的时间(秒)。对方可能会断开连接或一直不结束连接或不可预料的进程死亡。

60

30

/proc/sys/net/ipv4/ip_local_port_range

表示TCP/UDP协议允许使用的本地端口号

32768  61000

1024  65000

/proc/sys/net/ipv4/tcp_max_syn_backlog

对于还未获得对方确认的连接请求,可保存在队列中的最大数目。如果服务器经常出现过载,可以尝试增加这个数字。

2048

2048

/proc/sys/net/ipv4/tcp_low_latency

允许TCP/IP栈适应在高吞吐量情况下低延时的情况,这个选项应该禁用。

0


/proc/sys/net/ipv4/tcp_westwood

启用发送者端的拥塞控制算法,它可以维护对吞吐量的评估,并试图对带宽的整体利用情况进行优化,对于WAN 通信来说应该启用这个选项。

0


/proc/sys/net/ipv4/tcp_bic

为快速长距离网络启用Binary Increase Congestion,这样可以更好地利用以GB速度进行操作的链接,对于WAN通信应该启用这个选项。

1


 


/etc/sysctl.conf文件

  /etc/sysctl.conf是一个允许你改变正在运行中的Linux系统的接口。它包含一些TCP/IP堆栈和虚拟内存系统的高级选项,可用来控制Linux网络配置,由于/proc/sys/net目录内容的临时性,建议把TCPIP参数的修改添加到/etc/sysctl.conf文件, 然后保存文件,使用命令“/sbin/sysctl –p”使之立即生效。具体修改方案参照上文:

net.core.rmem_default = 256960

net.core.rmem_max = 513920

net.core.wmem_default = 256960

net.core.wmem_max = 513920

net.core.netdev_max_backlog = 2000

net.core.somaxconn = 2048

net.core.optmem_max = 81920

net.ipv4.tcp_mem = 131072  262144  524288

net.ipv4.tcp_rmem = 8760  256960  4088000

net.ipv4.tcp_wmem = 8760  256960  4088000

net.ipv4.tcp_keepalive_time = 1800

net.ipv4.tcp_keepalive_intvl = 30

net.ipv4.tcp_keepalive_probes = 3

net.ipv4.tcp_sack = 1

net.ipv4.tcp_fack = 1

net.ipv4.tcp_timestamps = 1

net.ipv4.tcp_window_scaling = 1

net.ipv4.tcp_syncookies = 1

net.ipv4.tcp_tw_reuse = 1

net.ipv4.tcp_tw_recycle = 1

net.ipv4.tcp_fin_timeout = 30

net.ipv4.ip_local_port_range = 1024  65000

net.ipv4.tcp_max_syn_backlog = 2048

本文转自sandshell博客51CTO博客,原文链接http://blog.51cto.com/sandshell/1955911如需转载请自行联系原作者


sandshell

相关文章
|
4天前
|
Shell Linux
【Linux】Bash支持各种指令选项的原理:命令行参数
【Linux】Bash支持各种指令选项的原理:命令行参数
|
4天前
|
运维 监控 Linux
提升系统稳定性:Linux内核参数调优实战
【5月更文挑战第1天】 在运维领域,保障服务器的高效稳定运行是核心任务之一。Linux操作系统因其开源、可靠和灵活的特点被广泛应用于服务器中。本文将深入探讨通过调整Linux内核参数来优化系统性能,提升服务器的稳定性和响应能力。文章首先介绍了内核参数调优的必要性和基本原则,然后详细阐述了调优过程中的关键步骤,包括如何监控当前系统状态,确定性能瓶颈,选择合适的参数进行调优,以及调优后的测试与验证。最后,文中提供了一些常见问题的解决策略和调优的最佳实践。
23 5
|
5天前
|
算法 大数据 Linux
深入理解Linux内核的进程调度机制
【4月更文挑战第30天】操作系统的核心职能之一是有效地管理和调度进程,确保系统资源的合理分配和高效利用。在众多操作系统中,Linux因其开源和高度可定制的特点,在进程调度机制上展现出独特优势。本文将深入探讨Linux内核中的进程调度器——完全公平调度器(CFS),分析其设计理念、实现原理及面临的挑战,并探索未来可能的改进方向。
|
5天前
|
存储 负载均衡 网络协议
在Linux中优化系统性能的实用指南
【4月更文挑战第30天】本文是关于Linux系统性能优化的指南,涵盖硬件选择、系统及软件更新、调整Swap分区、内核参数优化、使用性能分析工具、文件系统优化、网络服务优化和定期维护等方面。通过这些方法,可提升系统响应速度,降低资源消耗,延长硬件寿命。注意,优化需根据具体系统和应用需求进行。
|
5天前
|
算法 Linux 调度
探索Linux内核:进程调度的奥秘
【4月更文挑战第30天】 在多任务操作系统中,进程调度是核心功能之一,它决定了处理器资源的分配。本文深入分析了Linux操作系统的进程调度机制,从调度器的基本原理到复杂的调度策略,以及它们如何影响系统性能和用户体验。通过剖析进程优先级、时间片分配以及实时性要求等方面,揭示了Linux如何在众多运行着的进程中做出快速而公平的决策,确保系统的高效与稳定运行。
|
5天前
|
算法 安全 Linux
深度解析:Linux内核内存管理机制
【4月更文挑战第30天】 在操作系统领域,内存管理是核心功能之一,尤其对于多任务操作系统来说更是如此。本文将深入探讨Linux操作系统的内核内存管理机制,包括物理内存的分配与回收、虚拟内存的映射以及页面替换算法等关键技术。通过对这些技术的详细剖析,我们不仅能够理解操作系统如何高效地利用有限的硬件资源,还能领会到系统设计中的性能与复杂度之间的权衡。
|
6天前
|
弹性计算 网络协议 Shell
自动优化Linux 内核参数
【4月更文挑战第29天】
5 1
|
6天前
|
存储 Oracle 关系型数据库
linux操作系统相关资源优化
【4月更文挑战第21天】基于操作系统的性能优化也是多方面的,主要是系统安装、系统内核参数、网络参数、文件系统等几个方面进行衡量
17 2
|
7天前
|
缓存 网络协议 Linux
Linux服务器性能优化小结(下)
Linux服务器性能优化小结(下)
18 0
|
7天前
|
监控 算法 Linux
Linux服务器性能优化小结(上)
Linux服务器性能优化小结(上)
15 0