机器学习之——判定边界和逻辑回归模型的代价函数

简介: 判定边界(Decision Boundary) 上一次我们讨论了一个新的模型——逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测: 当hø大于等于0.5时,预测y=1当hø小于0.5时,预测y=0根据上面的预测,我们绘制出一条S形函数,如下: 根据函数图像,我们知道,当  z=0时,g(z)=0.5 z>0时,g(z)

判定边界(Decision Boundary)

上一次我们讨论了一个新的模型——逻辑回归模型(Logistic Regression),在逻辑回归中,我们预测:

  • 当hø大于等于0.5时,预测y=1
  • 当hø小于0.5时,预测y=0
根据上面的预测,我们绘制出一条S形函数,如下:


根据函数图像,我们知道,当

  •  z=0时,g(z)=0.5
  •  z>0时,g(z)>0.5
  •  z<0时,g(z)<0.5
又有:


所以


以上,为我们预知的逻辑回归的部分内容。好,现在假设我们有一个模型: 并且参数ø是向量 :[-3 1 1]。那么当-3+x1+x2大于等于0,即x1+x2大于等于3时,模型将预测 y=1。

我们可以绘制出来x1+x2=3,这条线便是我们模型的分界线,也称之为判定边界(Decision Boundary),将预测为1的区域和预测为0的区域分隔开。


假设我们的数据呈现出如下图的分布情况,那么我们的模型是什么样才能适合这些数据呢?


如上图,函数图像为一个圆,圆点在原点且半径为1,这样一条曲线来分隔开了 y=1 和 y=0 的区域,所以我们需要的是一个二次方特征:


假设参数为 [-1  0  0  1  1],则我们得到的判定边界恰好是圆点在原点并且半径为1的圆形。

我们可以使用非常复杂的模型来适应非常复杂形状的判定边界。


逻辑回归模型的代价函数(Cost Function)

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。理论上讲,我们也可以沿用这个定义来对逻辑回归模型使用,但是问题在于,当我们将:

代入到这样定义的代价函数中时,我们得到的代价函数将会是一个非凸函数(Non-covex Function)


这意味着,我们的代价函数将会有许多的局部最小值,这就会影响到梯度下降算法去找寻全局最小值。

因此,我们重新定义逻辑回归的代价函数为:


其中,Cost(hø(x(i), y(i))) 是我们定义的一个代价函数迭代形式,具体表示如下:


hø(x) 与 Cost(hø(x),y)之间的关系是如下图所示:


通过这样构建的Cost(hø(x), y)函数的特点是:

当实际的 y=1 且 hø=1 时,误差为0;当  y=1 但 hø != 1时,误差随hø的变小而变大;

当实际的 y=0 且 hø=0 时,误差代价为0;当 y=0 但 hø != 0 时,误差随hø的变大而变大。

将构建的Cost(hø(x), y) 进行一个简化,可以得到如下简化公式:


这个简化其实是对上面Cost(hø(x), y) 的两种表达式的一次性结合。

将简化代入到代价函数,得到:


这便是逻辑回归模型的代价函数了。

在得到这样的一个代价函数之后,我们便可以使用梯度下降算法(Gradient Descent)来求得能够使代价函数最小的参数了。

梯度下降算法:


对此求导,得到:


*注:虽然得到的梯度下降算法,表面上看上去和线性回归的梯度下降算法一样,但是这里的hø(x) = g(øTX)与线性回归不同,所以实际上是不一样的。另外,在运行梯度下降算法之前,对特征进行特征缩放(Features Scaling)也是非常必要的。


一些梯度下降算法之外的选择:

除了梯度下降算法之外,还有一些常被用来使代价函数最小的算法,这些算法更加复杂和优秀,而且通常情况下,不需要人工选择学习速率,通常也比梯度下降算法更加快速。举一些例子:共轭梯度法(Conjugate Gradient)局部优化法(Broyden Fletcher Goldfarb Shann, BFGS)有限内存局部优化法(LBFGS)。这些算法更加复杂也更加优秀,如果感兴趣我们可以以后再继续讨论。

MatlabOctave中,有一个最小值优化函数,fminunc。使用时,我们需要提供代价函数和每个参数的求导,这里给大家举一个例子:

function [ jVal, gradient ] = costFunction( theta )
%COSTFUNCTION Summary of this function goes here
%   Detailed explanation goes here
    jVal = (theta(1)-5)^2 + (theta(2)-5)^2;
    gradient = zeros(2,1);
    gradient(1) = 2*(theta(1)-5);
    gradient(2) = 2*(theta(2)-5);

end

options = optimset('GradObj', 'on', 'MaxIter', '100');
initialTheta = zeros(2,1);
[optTheta, functionVal, exitFlag] = fminunc(@costFunction, initialTheta, options);

*PS :关于机器学习相关算法的 MatlabOctave代码,我上传到了我的coding.net项目中,有需要的童鞋可以联系我。
相关文章
|
11天前
|
机器学习/深度学习 数据采集 人工智能
构建高效机器学习模型的五大技巧
【4月更文挑战第7天】 在数据科学迅猛发展的今天,机器学习已成为解决复杂问题的重要工具。然而,构建一个既精确又高效的机器学习模型并非易事。本文将分享五种提升机器学习模型性能的有效技巧,包括数据预处理、特征工程、模型选择、超参数调优以及交叉验证。这些方法不仅能帮助初学者快速提高模型准确度,也为经验丰富的数据科学家提供了进一步提升模型性能的思路。
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
机器学习之线性回归与逻辑回归【完整房价预测和鸢尾花分类代码解释】
|
16天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型的最佳实践
【4月更文挑战第3天】在数据驱动的时代,构建高效的机器学习模型已成为解决复杂问题的关键。本文将探讨一系列实用的技术策略,旨在提高模型的性能和泛化能力。我们将从数据预处理、特征工程、模型选择、超参数调优到集成学习等方面进行详细讨论,并通过实例分析展示如何在实践中应用这些策略。
15 1
|
1天前
|
机器学习/深度学习 存储 算法
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
PYTHON集成机器学习:用ADABOOST、决策树、逻辑回归集成模型分类和回归和网格搜索超参数优化
25 7
|
3天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第16天】 在数据驱动的时代,机器学习已成为解决复杂问题的关键工具。本文旨在分享一套实用的技术流程,帮助读者构建高效的机器学习模型。我们将重点讨论特征工程的重要性、选择合适算法的策略,以及通过交叉验证和网格搜索进行模型调优的方法。文章的目标是为初学者提供一个清晰的指南,同时为有经验的实践者提供一些高级技巧。
|
14天前
|
机器学习/深度学习 数据采集 算法
构建高效机器学习模型:从数据预处理到模型优化
【4月更文挑战第5天】 在机器学习领域,构建一个高效的模型并非易事。它涉及多个阶段,包括数据预处理、特征工程、模型选择、训练以及最终的评估和优化。本文深入探讨了如何通过精确的数据预处理技巧和细致的特征工程来提升模型性能,同时介绍了几种常见的模型优化策略。我们的目标是为读者提供一套实用的指导方案,帮助他们在面对复杂数据集时能够有效地构建和调整机器学习模型。
|
15天前
|
机器学习/深度学习 算法 数据挖掘
构建高效机器学习模型:从特征工程到模型调优
【4月更文挑战第4天】在数据驱动的时代,构建一个高效的机器学习模型是解决复杂问题的关键。本文将深入探讨特征工程的重要性,并分享如何通过自动化技术进行特征选择与构造。接着,我们将讨论不同的机器学习算法及其适用场景,并提供模型训练、验证和测试的最佳实践。最后,文章将展示如何使用网格搜索和交叉验证来微调模型参数,以达到最优性能。读者将获得一套完整的指南,用以提升机器学习项目的预测准确率和泛化能力。
|
1月前
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
|
15天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
1月前
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
26 1

热门文章

最新文章