Mysql or Mongodb LBS快速实现方案

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 MongoDB,独享型 2核8GB
推荐场景:
构建全方位客户视图
简介: http://www.wubiao.info/470 前两篇文章: 查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372) 微信、陌陌 架构方案分析 (http://www.wubiao.info/401) 探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、redis自建索引方案。

http://www.wubiao.info/470

前两篇文章:

查找附近的xxx 球面距离以及Geohash方案探讨 (http://www.wubiao.info/372

微信、陌陌 架构方案分析 (http://www.wubiao.info/401

探讨了,LBS查找附近的XXX;其中包括了,Mysql自定义存储函数方案,以及通过GeoHash、redis自建索引方案。

===============================================================

今天分享两种,利用GeoHash封装成内置数据库函数的简易方案;

A:Mysql 内置函数方案,适合于已有业务,新增加LBS功能,增加经纬度字段方可,避免数据迁移

B:Mongodb 内置函数方案,适合中小型应用,快速实现LBS功能,性能优于A(推荐)

===============================================================

方案A: (MySQL Spatial)

1、先简历一张表:(MySQL 5.0 以上 仅支持 MyISAM 引擎)

1
2
3
4
5
6
7
8
9
CREATE TABLE address (
 
     address CHAR (80) NOT NULL ,
 
     address_loc POINT NOT NULL ,
 
     PRIMARY KEY (address)
 
);

空间索引:

1
ALTER TABLE address ADD SPATIAL INDEX (address_loc);

插入数据:(注:此处Point(纬度,经度) 标准写法)

1
2
3
INSERT INTO address VALUES ( 'Foobar street 12' , GeomFromText( 'POINT(30.620076 104.067221)' ));
 
INSERT INTO address VALUES ( 'Foobar street 13' , GeomFromText( 'POINT(31.720076 105.167221)' ));

查询: 查找(30.620076,104.067221)附近 10 公里

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
SELECT  *
     FROM    address
     WHERE   MBRContains
                     (
                     LineString
                             (
                             Point
                                     (
                                     30.620076 + 10 / ( 111.1 / COS(RADIANS(104.067221))),
                                     104.067221 + 10 / 111.1
                                     ),
                             Point
                                     (
                                     30.620076 - 10 / ( 111.1 / COS(RADIANS(104.067221))),
                                     104.067221 - 10 / 111.1
                                     )
                             ),
                     address_loc
                     )

方案B:

1、先建立一张简单的表user,两条数据如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
{
   "_id" : ObjectId( "518b1f1a83ba88ca60000001" ),
   "account" : "simplephp1@163.com" ,
   "gps" : [
     104.067221,
     30.620076
   ]
}
 
{
   "_id" : ObjectId( "518b1dae83ba88d660000000" ),
   "account" : "simplephp6@163.com" ,
   "gps" : [
     104.07958,
     30.653936
   ]
}

其中,gps为二维数组,分别为经度,纬度

(注:此处必须按照(经度,纬度)顺序存储。我们平时表示经纬度,都是(纬度,精度),此处这种方式有木有很亲民)

2、使用之前,先建立二维索引

//建立索引 最大范围在经度-180~180

1
db. user .ensureIndex({ "gps" : "2d" },{ "min" :-180, "max" :180})

//删除索引

1
db. user .dropIndex({ "gps" : "2d" })

3、Mongodb有两中方式可以查找附近的XXX;其中方案2)会返回距离(推荐)

1)标准查询,为地球经纬度查询内置;参数一为查询条件利用nearmaxDistance为经纬弧度(1° latitude = 111.12 kilometers)即 1/111.12,表示查找附近一公里。

1
db. user .find({ gps :{ $near : [104.065847, 30.657554] , $maxDistance : 1/111.12} })

2)执行命名方式,模拟成一个圆球;参数一指定geoNear方式和表名;参数二坐标,参数三是否为球形,参数四弧度(弧度=弧长/半径 一千米的弧度1000/6378000),参数五指定球形半径(地球半径)

1
db.runCommand({geoNear: 'user' , near:[104.065847, 30.657554], spherical: true , maxDistance:1000/6378000, distanceMultiplier:6378000});

本条目发布于2013年05月28日。属于DB架构算法分类,被贴了 geohashLBSMongodbMysql 标签。

如何联系我:【万里虎】www.bravetiger.cn 【QQ】3396726884 (咨询问题100元起,帮助解决问题500元起) 【博客】http://www.cnblogs.com/kenshinobiy/
相关实践学习
MongoDB数据库入门
MongoDB数据库入门实验。
快速掌握 MongoDB 数据库
本课程主要讲解MongoDB数据库的基本知识,包括MongoDB数据库的安装、配置、服务的启动、数据的CRUD操作函数使用、MongoDB索引的使用(唯一索引、地理索引、过期索引、全文索引等)、MapReduce操作实现、用户管理、Java对MongoDB的操作支持(基于2.x驱动与3.x驱动的完全讲解)。 通过学习此课程,读者将具备MongoDB数据库的开发能力,并且能够使用MongoDB进行项目开发。   相关的阿里云产品:云数据库 MongoDB版 云数据库MongoDB版支持ReplicaSet和Sharding两种部署架构,具备安全审计,时间点备份等多项企业能力。在互联网、物联网、游戏、金融等领域被广泛采用。 云数据库MongoDB版(ApsaraDB for MongoDB)完全兼容MongoDB协议,基于飞天分布式系统和高可靠存储引擎,提供多节点高可用架构、弹性扩容、容灾、备份回滚、性能优化等解决方案。 产品详情: https://www.aliyun.com/product/mongodb
目录
打赏
0
0
0
0
24
分享
相关文章
Mysql高可用架构方案
本文阐述了Mysql高可用架构方案,介绍了 主从模式,MHA模式,MMM模式,MGR模式 方案的实现方式,没有哪个方案是完美的,开发人员在选择何种方案应用到项目中也没有标准答案,合适的才是最好的。
496 3
Mysql高可用架构方案
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
159 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
78 9
Aurora MySQL负载突增应对策略与优化方案
通过以上策略,企业可以有效应对 Aurora MySQL 的负载突增,确保数据库在高负载情况下依然保持高性能和稳定性。这些优化方案涵盖了从架构设计到具体配置和监控的各个方面,能够全面提升数据库的响应速度和处理能力。在实际应用中,应根据具体的业务需求和负载特征,灵活调整和应用这些优化策略。
78 22
MySQL 分库分表方案
本文总结了数据库分库分表的相关概念和实践,针对单张表数据量过大及增长迅速的问题,介绍了垂直和水平切分的方式及其适用场景。文章分析了分库分表后可能面临的事务支持、多库结果集合并、跨库join等问题,并列举了几种常见的开源分库分表中间件。最后强调了不建议水平分库分表的原因,帮助读者在规划时规避潜在问题。
457 20
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
MySQL的存储引擎是其核心组件之一,负责数据的存储、索引和检索。不同的存储引擎具有不同的功能和特性,可以根据业务需求 选择合适的引擎。本文详细介绍了MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案。
【MySQL进阶篇】存储引擎(MySQL体系结构、InnoDB、MyISAM、Memory区别及特点、存储引擎的选择方案)
数据库数据恢复—Mysql数据库表记录丢失的数据恢复方案
Mysql数据库故障: Mysql数据库表记录丢失。 Mysql数据库故障表现: 1、Mysql数据库表中无任何数据或只有部分数据。 2、客户端无法查询到完整的信息。
MongoDB主备副本集方案:两台服务器使用非对称部署的方式实现高可用与容灾备份
在资源受限的情况下,为了实现MongoDB的高可用性,本文探讨了两种在两台服务器上部署MongoDB的方案。方案一是通过主备身份轮换,即一台服务器作为主节点,另一台同时部署备节点和仲裁节点;方案二是利用`priority`设置实现自动主备切换。两者相比,方案二自动化程度更高,适合追求快速故障恢复的场景,而方案一则提供了更多的手动控制选项。文章最后对比了这两种方案与标准三节点副本集的优缺点,指出三节点方案在高可用性和数据一致性方面表现更佳。
419 5
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
mysql 5.7.x版本查看某张表、库的大小 思路方案说明
146 5

热门文章

最新文章