Go语言之 Struct Tag

简介: 在上一篇介绍Go反射的时候,提到了如何通过反射获取Struct的Tag,这一篇文章主要就是介绍这个的使用和原理,在介绍之前我们先看一下JSON字符串和Struct类型相互转换的例子。JSON字符串对象转换func main() {    var u User    h:=`{"name":"张三","age":15}`    err:=json.

在上一篇介绍Go反射的时候,提到了如何通过反射获取Struct的Tag,这一篇文章主要就是介绍这个的使用和原理,在介绍之前我们先看一下JSON字符串和Struct类型相互转换的例子。


JSON字符串对象转换


func main() {
    var u User
    h:=`{"name":"张三","age":15}`
    err:=json.Unmarshal([]byte(h),&u)    
    if err!=nil{
        fmt.Println(err)
    }else {
        fmt.Println(u)
    }
}
type User struct{    Name string `name`    Age int `age`
}


上面这个例子就是Json字符串转User对象的例子,这里主要利用的就是User这个结构体对应的字段Tag,json解析的原理就是通过反射获得每个字段的tag,然后把解析的json对应的值赋给他们。


利用字段Tag不光可以把Json字符串转为结构体对象,还可以把结构体对象转为Json字符串。


 newJson,err:=json.Marshal(&u)
 fmt.Println((string(newJson)))


接着刚刚的例子,这样就可以转为一个新的字符串了,通过打印输出,可以看到和开始输入的字符串一样。


反射获取字段Tag


字段的Tag是标记到字段上的,所以我们可以通过先获取字段,然后再获取字段上的Tag。


func main() {
    var u User

    t:=reflect.TypeOf(u)    
    for i:=0;i<t.NumField();i++{
        sf:=t.Field(i)
        fmt.Println(sf.Tag)
    }
}


获取字段上一篇我们提到过,获取字段后,调用.Tag就获取到对应的Tag字段了。


字段Tag的键值对


很多时候我们的一个Struct不止具有一个功能,比如我们需要JSON的互转、还需要BSON以及ORM解析的互转,所以一个字段可能对应多个不同的Tag,以便满足不同的功能场景。


Go Struct 为我们提供了键值对的Tag,来满足我们以上的需求。


func main() {
    var u User
    t:=reflect.TypeOf(u)    
    for i:=0;i<t.NumField();i++{
        sf:=t.Field(i)
        fmt.Println(sf.Tag.Get("json"))
    }
}
type User struct{    Name string `json:"name"`    Age int `json:"age"`
}


以上的例子,使用了键值对的方式配置Struct Tag,Key-Value以冒号分开,这里的Key为json,所以我们可以通过这个Key获取对应的值,也就是通过.Tag.Get("json"))方法。Get方法就是通过一个Key获取对应的tag设置。


除此之外,我们还可以设置多个Key,来满足我们上面说的场景。


func main() {
    var u User
    t:=reflect.TypeOf(u)    
    for i:=0;i<t.NumField();i++{
        sf:=t.Field(i)
        fmt.Println(sf.Tag.Get("json"),",",sf.Tag.Get("bson"))
    }
}
type User struct{    Name string `json:"name" bson:"b_name"`    Age int `json:"age" bson:"b_age"`
}


多个Key使用空格进行分开,然后使用Get方法获取不同Key的值。


Struct Tag可以提供字符串到Struct的映射能力,以便我们作转换,除此之外,还可以作为字段的元数据的配置,提供我们需要的配置,比如生成Swagger文档等。


目录
相关文章
|
1天前
|
消息中间件 Go API
Golang深入浅出之-Go语言中的微服务架构设计与实践
【5月更文挑战第4天】本文探讨了Go语言在微服务架构中的应用,强调了单一职责、标准化API、服务自治和容错设计等原则。同时,指出了过度拆分、服务通信复杂性、数据一致性和部署复杂性等常见问题,并提出了DDD拆分、使用成熟框架、事件驱动和配置管理与CI/CD的解决方案。文中还提供了使用Gin构建HTTP服务和gRPC进行服务间通信的示例。
9 0
|
1天前
|
Prometheus 监控 Cloud Native
Golang深入浅出之-Go语言中的分布式追踪与监控系统集成
【5月更文挑战第4天】本文探讨了Go语言中分布式追踪与监控的重要性,包括追踪的三个核心组件和监控系统集成。常见问题有追踪数据丢失、性能开销和监控指标不当。解决策略涉及使用OpenTracing或OpenTelemetry协议、采样策略以及聚焦关键指标。文中提供了OpenTelemetry和Prometheus的Go代码示例,强调全面可观测性对微服务架构的意义,并提示选择合适工具和策略以确保系统稳定高效。
12 5
|
1天前
|
监控 算法 Go
Golang深入浅出之-Go语言中的服务熔断、降级与限流策略
【5月更文挑战第4天】本文探讨了分布式系统中保障稳定性的重要策略:服务熔断、降级和限流。服务熔断通过快速失败和暂停故障服务调用来保护系统;服务降级在压力大时提供有限功能以保持整体可用性;限流控制访问频率,防止过载。文中列举了常见问题、解决方案,并提供了Go语言实现示例。合理应用这些策略能增强系统韧性和可用性。
12 0
|
1天前
|
负载均衡 算法 Go
Golang深入浅出之-Go语言中的服务注册与发现机制
【5月更文挑战第4天】本文探讨了Go语言中服务注册与发现的关键原理和实践,包括服务注册、心跳机制、一致性问题和负载均衡策略。示例代码演示了使用Consul进行服务注册和客户端发现服务的实现。在实际应用中,需要解决心跳失效、注册信息一致性和服务负载均衡等问题,以确保微服务架构的稳定性和效率。
11 3
|
1天前
|
中间件 Go
Go语言中的中间件设计与实现
【5月更文挑战第4天】Go语言中的中间件在HTTP请求处理中扮演重要角色,提供了一种插入逻辑层的方式,便于实现日志、认证和限流等功能,而不增加核心代码复杂性。中间件遵循`http.Handler`接口,通过函数组合实现。常见问题包括错误处理(确保中间件能正确处理并传递错误)和请求上下文管理(使用`context.Context`共享数据以避免并发问题)。通过理解中间件机制和最佳实践,可以构建更健壮的Web应用。
15 0
|
2天前
|
前端开发 Go
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
【5月更文挑战第3天】Go语言通过goroutines和channels实现异步编程,虽无内置Future/Promise,但可借助其特性模拟。本文探讨了如何使用channel实现Future模式,提供了异步获取URL内容长度的示例,并警示了Channel泄漏、错误处理和并发控制等常见问题。为避免这些问题,建议显式关闭channel、使用context.Context、并发控制机制及有效传播错误。理解并应用这些技巧能提升Go语言异步编程的效率和健壮性。
13 5
Golang深入浅出之-Go语言中的异步编程与Future/Promise模式
|
2天前
|
监控 负载均衡 算法
Golang深入浅出之-Go语言中的协程池设计与实现
【5月更文挑战第3天】本文探讨了Go语言中的协程池设计,用于管理goroutine并优化并发性能。协程池通过限制同时运行的goroutine数量防止资源耗尽,包括任务队列和工作协程两部分。基本实现思路涉及使用channel作为任务队列,固定数量的工作协程处理任务。文章还列举了一个简单的协程池实现示例,并讨论了常见问题如任务队列溢出、协程泄露和任务调度不均,提出了解决方案。通过合理设置缓冲区大小、确保资源释放、优化任务调度以及监控与调试,可以避免这些问题,提升系统性能和稳定性。
13 6
|
2天前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
15 5
|
3天前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
17 4
|
3天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
21 4