mysql 如何提高批量导入的速度

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

mysql数据库导入数据的速度:
0. 最快的当然是直接 copy 数据库表的数据文件(版本和平台最好要相同或相似);
1. 设置 innodb_flush_log_at_trx_commit = 0 ,相对于 innodb_flush_log_at_trx_commit = 1 可以十分明显的提升导入速度;
2. 使用 load data local infile 提速明显;
3. 修改参数 bulk_insert_buffer_size, 调大批量插入的缓存;
4. 合并多条 insert 为一条: insert into t values(a,b,c),  (d,e,f) ,,,
5. 手动使用事物;


下面是UC的一篇相关博客文章:
http://tech.uc.cn/?p=634
MySQL批量SQL插入性能优化
对于一些数据量较大的系统,数据库面临的问题除了查询效率低下,还有就是数据入库时间长。特别像报表系统,每天花费在数据导入上的时间可能会长达几个小时或十几个小时之久。因此,优化数据库插入性能是很有意义的。

经过对MySQL innodb的一些性能测试,发现一些可以提高insert效率的方法,供大家参考参考。

1. 一条SQL语句插入多条数据。
常用的插入语句如:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('1', 'userid_1', 'content_1', 1);

修改成:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);
INSERT
 INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0), ('1', 'userid_1', 'content_1', 1);

修改后的插入操作能够提高程序的插入效率。这里第二种SQL执行效率高的主要原因是合并后日志量(MySQL的binlog和innodb的事务让日志) 减少了,降低日志刷盘的数据量和频率,从而提高效率。通过合并SQL语句,同时也能减少SQL语句解析的次数,减少网络传输的IO。
这里提供一些测试对比数据,分别是进行单条数据的导入与转化成一条SQL语句进行导入,分别测试1百、1千、1万条数据记录。

 

2. 在事务中进行插入处理。
把插入修改成:
START TRANSACTION; 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
VALUES ('0', 'userid_0', 'content_0', 0); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) 
VALUES ('1', 'userid_1', 'content_1', 1); 
... 
COMMIT;

START TRANSACTION
;
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)    
VALUES 
('0', 'userid_0', 'content_0', 0);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)   
VALUES 
('1', 'userid_1', 'content_1', 1);
...COMMIT;

使用事务可以提高数据的插入效率,这是因为进行一个INSERT操作时,MySQL内部会建立一个事务,在事务内才进行真正插入处理操作。通过使用事务可以减少创建事务的消耗,所有插入都在执行后才进行提交操作。
这里也提供了测试对比,分别是不使用事务与使用事务在记录数为1百、1千、1万的情况。

 

3. 数据有序插入。
数据有序的插入是指插入记录在主键上是有序排列,例如datetime是记录的主键:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('2', 'userid_2', 'content_2',2);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('1', 'userid_1', 'content_1', 1);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('0', 'userid_0', 'content_0', 0);
INSERT INTO 
`insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('2', 'userid_2', 'content_2',2);

修改成:
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('0', 'userid_0', 'content_0', 0); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('1', 'userid_1', 'content_1', 1); 
INSERT INTO `insert_table` (`datetime`, `uid`, `content`, `type`) VALUES ('2', 'userid_2', 'content_2',2);
INSERT
 INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('0', 'userid_0', 'content_0', 0);
INSERT
 INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('1', 'userid_1', 'content_1', 1);
INSERT
 INTO `insert_table` (`datetime`, `uid`, `content`, `type`)  VALUES ('2', 'userid_2', 'content_2',2);

由于数据库插入时,需要维护索引数据,无序的记录会增大维护索引的成本。我们可以参照innodb使用的B+tree索引,如果每次插入记录都在索引的最 后面,索引的定位效率很高,并且对索引调整较小;如果插入的记录在索引中间,需要B+tree进行分裂合并等处理,会消耗比较多计算资源,并且插入记录的 索引定位效率会下降,数据量较大时会有频繁的磁盘操作。
下面提供随机数据与顺序数据的性能对比,分别是记录为1百、1千、1万、10万、100万。

从测试结果来看,该优化方法的性能有所提高,但是提高并不是很明显。

 

性能综合测试:
这里提供了同时使用上面三种方法进行INSERT效率优化的测试。

从测试结果可以看到,合并数据+事务的方法在较小数据量时,性能提高是很明显的,数据量较大时(1千万以上),性能会急剧下降,这是由于此时数据量超过了 innodb_buffer的容量,每次定位索引涉及较多的磁盘读写操作,性能下降较快。而使用合并数据+事务+有序数据的方式在数据量达到千万级以上表 现依旧是良好,在数据量较大时,有序数据索引定位较为方便,不需要频繁对磁盘进行读写操作,所以可以维持较高的性能。

 

注意事项:
1. SQL语句是有长度限制,在进行数据合并在同一SQL中务必不能超过SQL长度限制,通过max_allowed_packet配置可以修改,默认是1M,测试时修改为8M。
2. 事务需要控制大小,事务太大可能会影响执行的效率。MySQL有innodb_log_buffer_size配置项,超过这个值会把innodb的数据刷到磁盘中,这时,效率会有所下降。所以比较好的做法是,在数据达到这个这个值前进行事务提交。










本文转自 chengxuyonghu 51CTO博客,原文链接:http://blog.51cto.com/6226001001/1611013,如需转载请自行联系原作者
相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
234
分享
相关文章
python将word(doc或docx)的内容导入mysql数据库
用python先把doc文件转换成docx文件(这一步也可以不要后续会说明),然后读取docx的文件并另存为htm格式的文件(上一步可以直接把doc文件另存为htm),python根据bs4获取p标签里的内容,如果段落中有图片则保存图片。(图片在word文档中的位置可以很好的还原到生成的数据库内容) 我见网上有把docx压缩后解压获取图片的,然后根据在根据xml来读取图片的位置,我觉得比较繁琐。用docx模块读取段落的时候还需要是不是判断段落中有分页等,然而转成htm之后就不用判断那么多直接判断段落里的样式或者图片等就可以了。
169 1
Linux下mysql数据库的导入与导出以及查看端口
本文详细介绍了在Linux下如何导入和导出MySQL数据库,以及查看MySQL运行端口的方法。通过这些操作,用户可以轻松进行数据库的备份与恢复,以及确认MySQL服务的运行状态和端口。掌握这些技能,对于日常数据库管理和维护非常重要。
168 8
MySQL导入.sql文件后数据库乱码问题
本文分析了导入.sql文件后数据库备注出现乱码的原因,包括字符集不匹配、备注内容编码问题及MySQL版本或配置问题,并提供了详细的解决步骤,如检查和统一字符集设置、修改客户端连接方式、检查MySQL配置等,确保导入过程顺利。
SQL文件导入MySQL数据库的详细指南
数据库中的数据转移是一项常规任务,无论是在数据迁移过程中,还是在数据备份、还原场景中,导入导出SQL文件显得尤为重要。特别是在使用MySQL数据库时,如何将SQL文件导入数据库是一项基本技能。本文将详细介绍如何将SQL文件导入MySQL数据库,并提供一个清晰、完整的步骤指南。这篇文章的内容字数大约在
645 1
ECS域名问题之国内实例能不能导入阿里云新加坡的ECS和RDS如何解决
ECS(Elastic Compute Service,弹性计算服务)是云计算服务提供商提供的一种基础云服务,允许用户在云端获取和配置虚拟服务器。以下是ECS服务使用中的一些常见问题及其解答的合集:
Python小技巧——将CSV文件导入到MySQL数据库
Python小技巧——将CSV文件导入到MySQL数据库
281 0
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
教你使用Python玩转MySQL数据库,大数据导入不再是难题!
182 1
使用Python读取xlsx表格数据并导入到MySQL数据库中时遇到的问题24
【7月更文挑战第24天】使用Python读取xlsx表格数据并导入到MySQL数据库中
86 7
如何在 MySQL 或 MariaDB 中导入和导出数据库
如何在 MySQL 或 MariaDB 中导入和导出数据库
754 0