Python大数据处理模块Pandas

简介:

Pandas使用一个二维的数据结构DataFrame来表示表格式的数据,相比较于Numpy,Pandas可以存储混合的数据结构,同时使用NaN来表示缺失的数据,而不用像Numpy一样要手工处理缺失的数据,并且Pandas使用轴标签来表示行和列

1、文件读取
首先将用到的pandas和numpy加载进来
import pandas as pd
import numpy as np
读取数据:
#csv和xlsx分别用read_csv和read_xlsx,下面以csv
为例

df=pd.read_csv('f:\1024.csv') 


2、查看数据

df.head()  

#默认出5行号里可以填其他数据

3、查看数据类型

df.dtypes

4、利用现有数据生成一列新数据

比如:max_time和min_time是现有的两列,现在业务需要生成一列gs,gs=max_time-min_time

df.['gs']=df.['max_time']-['min_time']

#查看是否成功

df.head()

5、查看基本统计量

df.describe(include='all')                 # all代表需要将所有列都列出



通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:


import pandas as pd

 

# Reading data locally

df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')

 

# Reading data from web

data_url = "https://raw.githubusercontent.com/alstat/Analysis-with-Programming/master/2014/Python/Numerical-Descriptions-of-the-Data/data.csv"


df = pd.read_csv(data_url)


为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。


其中的read_csv函数能够读取本地和web数据




# Head of the data

print df.head()

 

# OUTPUT

    Abra  Apayao  Benguet  Ifugao  Kalinga

0   1243    2934      148    3300    10553

1   4158    9235     4287    8063    35257

2   1787    1922     1955    1074     4544

3  17152   14501     3536   19607    31687

4   1266    2385     2530    3315     8520

 

# Tail of the data


print df.tail()

 

# OUTPUT

     Abra  Apayao  Benguet  Ifugao  Kalinga

74   2505   20878     3519   19737    16513

75  60303   40065     7062   19422    61808

76   6311    6756     3561   15910    23349

77  13345   38902     2583   11096    68663

78   2623   18264     3745   16787    16900


上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。



当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),


在Python中就是df.head(n = 10),打印数据尾部也是同样道理。



在Python中,我们则使用columns和index属性来提取,如下:



# Extracting column names


print df.columns

 

# OUTPUT


Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')

 

# Extracting row names or the index


print df.index

 

# OUTPUT

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], dtype='int64')


数据转置使用T方法,



# Transpose data

print df.T

 

# OUTPUT

            0      1     2      3     4      5     6      7     8      9  

Abra      1243   4158  1787  17152  1266   5576   927  21540  1039   5424  

Apayao    2934   9235  1922  14501  2385   7452  1099  17038  1382  10588  

Benguet    148   4287  1955   3536  2530    771  2796   2463  2592   1064  

Ifugao    3300   8063  1074  19607  3315  13134  5134  14226  6842  13828  

Kalinga  10553  35257  4544  31687  8520  28252  3106  36238  4973  40140  

 

         ...       69     70     71     72     73     74     75     76     77  

Abra     ...    12763   2470  59094   6209  13316   2505  60303   6311  13345  

Apayao   ...    37625  19532  35126   6335  38613  20878  40065   6756  38902  

Benguet  ...     2354   4045   5987   3530   2585   3519   7062   3561   2583  

Ifugao   ...     9838  17125  18940  15560   7746  19737  19422  15910  11096  

Kalinga  ...    65782  15279  52437  24385  66148  16513  61808  23349  68663  

 

            78  

Abra      2623  

Apayao   18264  

Benguet   3745  

Ifugao   16787  

Kalinga  16900  

 

其他变换,例如排序就是用sort属性。现在我们提取特定的某列数据

Python中,可以使用iloc或者ix属性。但是我更喜欢用ix,因为它更稳定一些。假设我们需数据第一列的前5行,我们有:


print df.ix[:, 0].head()

 

# OUTPUT

0     1243

1     4158

2     1787

3    17152

4     1266

Name: Abra, dtype: int64



顺便提一下,Python的索引是从0开始而非1。为了取出从11到20行的前3列数据,我们有:


print df.ix[10:20, 0:3]

 

# OUTPUT

    Abra  Apayao  Benguet

10    981    1311     2560

11  27366   15093     3039

12   1100    1701     2382

13   7212   11001     1088

14   1048    1427     2847

15  25679   15661     2942

16   1055    2191     2119

17   5437    6461      734

18   1029    1183     2302

19  23710   12222     2598

20   1091    2343     2654



上述命令相当于df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。


为了舍弃数据中的列,这里是列1(Apayao)和列2(Benguet),我们使用drop属性,如下:


print df.drop(df.columns[[1, 2]], axis = 1).head()

 

# OUTPUT

    Abra  Ifugao  Kalinga

0   1243    3300    10553

1   4158    8063    35257

2   1787    1074     4544

3  17152   19607    31687

4   1266    3315     8520


axis 参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行


统计描述


下一步就是通过describe属性,对数据的统计特性进行描述:


print df.describe()

 

# OUTPUT

               Abra        Apayao      Benguet        Ifugao       Kalinga

count     79.000000     79.000000    79.000000     79.000000     79.000000

mean   12874.379747  16860.645570  3237.392405  12414.620253  30446.417722

std    16746.466945  15448.153794  1588.536429   5034.282019  22245.707692

min      927.000000    401.000000   148.000000   1074.000000   2346.000000

25%     1524.000000   3435.500000  2328.000000   8205.000000   8601.500000

50%     5790.000000  10588.000000  3202.000000  13044.000000  24494.000000

75%    13330.500000  33289.000000  3918.500000  16099.500000  52510.500000

max    60303.000000  54625.000000  8813.000000  21031.000000  68663.000000


Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000,我们有:


 from scipy import stats as ss

 

# Perform one sample t-test using 1500 as the true mean

print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)

 

# OUTPUT

(-1.1281738488299586, 0.26270472069109496)


返回下述值组成的元祖:


t : 浮点或数组类型

t统计量

prob : 浮点或数组类型

two-tailed p-value 双侧概率值

通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000,我们有:


print ss.ttest_1samp(a = df, popmean = 15000)

 

# OUTPUT

(array([ -1.12817385,   1.07053437, -65.81425599,  -4.564575  ,   6.17156198]),

array([  2.62704721e-01,   2.87680340e-01,   4.15643528e-70,

          1.83764399e-05,   2.82461897e-08]))



第一个数组是t统计量,第二个数组则是相应的p值。


可视化


Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块。之前的博文中,我已经说明了matplotlib库中的盒须图模块功能。


# Import the module for plotting

import matplotlib.pyplot as plt

plt.show(df.plot(kind = 'box'))



现在,我们可以用pandas模块中集成R的ggplot主题来美化图表。要使用ggplot,我们只需要在上述代码中多加一行,



import matplotlib.pyplot as plt

pd.options.display.mpl_style = 'default' # Sets the plotting display theme to ggplot2

df.plot(kind = 'box')



# Import the seaborn library

import seaborn as sns

# Do the boxplot

plt.show(sns.boxplot(df, widths = 0.5, color = "pastel"))



import numpy as np

import scipy.stats as ss

 

def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    m = np.zeros((rep, 4))

 

    for i in range(rep):

        norm = np.random.normal(loc = mu, scale = sigma, size = n)

        xbar = np.mean(norm)

        low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

        up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

 

        if (mu > low) & (mu < up):

            rem = 1

        else:

            rem = 0

 

        m[i, :] = [xbar, low, up, rem]

 

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

           "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

 

    return {"Matrix": m, "Decision": desc}



import numpy as np

import scipy.stats as ss

 

def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

    scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

    norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))

 

    xbar = norm.mean(1)

    low = xbar - scaled_crit

    up = xbar + scaled_crit

 

    rem = (mu > low) & (mu < up)

    m = np.c_[xbar, low, up, rem]

 

    inside = np.sum(m[:, 3])

    per = inside / rep

    desc = "There are " + str(inside) + " confidence intervals that contain "

           "the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

    return {"Matrix": m, "Decision": desc}




读取数据

Pandas使用函数read_csv()来读取csv文件

import pandas

food_info = ('food_info.csv')
print(type(food_info))
# 输出:<class 'pandas.core.frame.DataFrame'> 可见读取后变成一个DataFrame变量

 

该文件的内容如下:

图片3

 

使用函数head( m )来读取前m条数据,如果没有参数m,默认读取前五条数据

first_rows = food_info.head()

first_rows = food_info.head(3)

由于DataFrame包含了很多的行和列,

Pandas使用省略号(...)来代替显示全部的行和列,可以使用colums属性来显示全部的列名

print(food_info.columns)

# 输出:输出全部的列名,而不是用省略号代替

Index(['NDB_No', 'Shrt_Desc', 'Water_(g)', 'Energ_Kcal', 'Protein_(g)', 'Lipid_Tot_(g)', 'Ash_(g)', 'Carbohydrt_(g)', 'Fiber_TD_(g)', 'Sugar_Tot_(g)', 'Calcium_(mg)', 'Iron_(mg)', 'Magnesium_(mg)', 'Phosphorus_(mg)', 'Potassium_(mg)', 'Sodium_(mg)', 'Zinc_(mg)', 'Copper_(mg)', 'Manganese_(mg)', 'Selenium_(mcg)', 'Vit_C_(mg)', 'Thiamin_(mg)', 'Riboflavin_(mg)', 'Niacin_(mg)', 'Vit_B6_(mg)', 'Vit_B12_(mcg)', 'Vit_A_IU', 'Vit_A_RAE', 'Vit_E_(mg)', 'Vit_D_mcg', 'Vit_D_IU', 'Vit_K_(mcg)', 'FA_Sat_(g)', 'FA_Mono_(g)', 'FA_Poly_(g)', 'Cholestrl_(mg)'], dtype='object')

可以使用tolist()函数转化为list

food_info.columns.tolist()

与Numpy一样,用shape属性来显示数据的格式


dimensions = (dimensions)
print(dimensions)
输出:(8618,36) ,

其中dimensions[0]为8618,dimensions[1]为36

 

与Numpy一样,用dtype属性来显示数据类型,Pandas主要有以下几种dtype:

  • object -- 代表了字符串类型

  • int -- 代表了整型

  • float -- 代表了浮点数类型

  • datetime -- 代表了时间类型

  • bool -- 代表了布尔类型

 

当读取了一个文件之后,Pandas会通过分析值来推测每一列的数据类型

print()

输出:每一列对应的数据类型

NDB_No            int64

Shrt_Desc           object

Water_(g)           float64

Energ_Kcal          int64

Protein_(g)          float64

...


索引

读取了文件后,Pandas会把文件的一行作为列的索引标签,使用行数字作为行的索引标签

图片4

注意,行标签是从数字0开始的

Pandas使用Series数据结构来表示一行或一列的数据,类似于Numpy使用向量来表示数据。Numpy只能使用数字来索引,而Series可以使用非数字来索引数据,当你选择返回一行数据的时候,Series并不仅仅返回该行的数据,同时还有每一列的标签的名字。

譬如要返回文件的第一行数据,Numpy就会返回一个列表(但你可能不知道每一个数字究竟代表了什么)

图片5

而Pandas则会同时把每一列的标签名返回(此时就很清楚数据的意思了)

图片6

 

选择数据

Pandas使用loc[]方法来选择行的数据

# 选择单行数据:

food_info.loc[0]   # 选择行标号为0的数据,即第一行数据
food_info.loc[6]   # 选择行标号为6的数据,即第七行数据

# 选择多行数据:

 # 使用了切片,注意:由于这里使用loc[]函数,所以返回的是行标号为3,4,5,6的数据,与python的切片不同的是这里会返回最后的标号代表的数据,但也可以使用python的切片方法:

 # 返回行标号为2,5,10三行数据

练习:返回文件的最后五行

方法一:

length = food_info.shape[0]

last_rows = food_info.loc[length-5:length-1]

方法二:

num_rows = food_info.shape[0]

last_rows = food_info[num_rows-5:num_rows]



ndb_col = food_info["NDB_No"] # 返回列名称为NDB_No的那一列的数据

zinc_copper = food_info[["Zinc_(mg)", "Copper_(mg)"]] # 返回两列数据

 

简单运算

现在要按照如下公式计算所有食物的健康程度,并按照降序的方式排列结果:

Score=2×(Protein_(g))0.75×(Lipid_Tot_(g))

对DataFrame中的某一列数据进行算术运算,其实是对该列中的所有元素进行逐一的运算,譬如:

water_energy = food_info["Water_(g)"] * food_info["Energ_Kcal"]

原理:

图片7

由于每一列的数据跨度太大,有的数据是从0到100000,而有的数据是从0到10,所以为了尽量减少数据尺度对运算结果的影响,采取最简单的方法来规范化数据,那就是将每个数值都除以该列的最大值,从而使所有数据都处于0和1之间。其中max()函数用来获取该列的最大值.

food_info['Normalized_Protein'] = food_info['Protein_(g)'] / food_info['Protein_(g)'].max()

food_info['Normalized_Fat'] = food_info['Lipid_Tot_(g)'] / food_info['Lipid_Tot_(g)'].max()

food_info['Norm_Nutr_Index'] = food_info["Normalized_Protein"] * 2 - food_info["Normalized_Fat"] * 0.75

注意:上面的两个语句已经在原来的DataFrame中添加了三列,列名分别为Normalized_Protein和Normalized_Fat,Norm_Nutr_Index。只需要使用中括号和赋值符就能添加新列,类似于字典



food_info.sort("Sodium_(mg)") # 函数参数为列名,默认是按照升序排序,同时返回一个新的

DataFramefood_info.("Norm_Nutr_Index", inplace=True, ascending=False ) 

# ,而不是返回一个新的对象;ascending参数用来控制是否升序排序


import pandas as pd

read_csv()

读写csv数据

df = pd.read_csv(path): 读入csv文件,形成一个数据框(data.frame)

df = pd.read_csv(path, header=None) 不要把第一行作为header

to_csv()

* 注意,默认会将第一行作为header,并且默认会添加index,所以不需要的话需要手动禁用 *

df.to_csv(path, header=False, index=False)

数据框操作

df.head(1) 读取头几条数据

df.tail(1) 读取后几条数据

df[‘date’] 获取数据框的date列

df.head(1)[‘date’] 获取第一行的date列

df.head(1)[‘date’][0] 获取第一行的date列的元素值

sum(df[‘ability’]) 计算整个列的和

df[df[‘date’] == ‘20161111’] 获取符合这个条件的行

df[df[‘date’] == ‘20161111’].index[0] 获取符合这个条件的行的行索引的值

df.iloc[1] 获取第二行

df.iloc[1][‘test2’] 获取第二行的test2值

10 mins to pandas 
df.index 获取行的索引

df.index[0] 获取第一个行索引

df.index[-1] 获取最后一个行索引,只是获取索引值

df.columns 获取列标签

df[0:2] 获取第1到第2行,从0开始,不包含末端

df.loc[1] 获取第二行

df.loc[:,’test1’] 获取test1的那一列,这个冒号的意思是所有行,逗号表示行与列的区分

df.loc[:,[‘test1’,’test2’]] 获取test1列和test2列的数据

df.loc[1,[‘test1’,’test2’]] 获取第二行的test1和test2列的数据

df.at[1,’test1’] 表示取第二行,test1列的数据,和上面的方法类似

df.iloc[0] 获取第一行

df.iloc[0:2,0:2] 获取前两行前两列的数据

df.iloc[[1,2,4],[0,2]] 获取第1,2,4行中的0,2列的数据

(df[2] > 1).any() 对于Series应用any()方法来判断是否有符合条件的


091345070096306.jpg

一、            创建对象

可以通过 Data Structure Intro Setion 来查看有关该节内容的详细信息。

1、可以通过传递一个list对象来创建一个Seriespandas会默认创建整型索引:

091345076034490.jpg

2、通过传递一个numpy array,时间索引以及列标签来创建一个DataFrame

091345082908347.jpg

3、通过传递一个能够被转换成类似序列结构的字典对象来创建一个DataFrame

091345087282047.jpg

4、查看不同列的数据类型:

091345090718475.jpg

5、如果你使用的是IPython,使用Tab自动补全功能会自动识别所有的属性以及自定义的列,下图中是所有能够被自动识别的属性的一个子集:

091345093844147.jpg

二、            查看数据

详情请参阅:Basics Section

 

1、  查看frame中头部和尾部的行:

091345098371076.jpg

2、  显示索引、列和底层的numpy数据:

091345103061233.jpg

3、  describe()函数对于数据的快速统计汇总:

091345112901832.jpg

4、  对数据的转置:

091345117126002.jpg

5、  按轴进行排序

091345121033716.jpg

6、  按值进行排序

091345124782901.jpg

三、            选择

虽然标准的Python/Numpy的选择和设置表达式都能够直接派上用场,但是作为工程使用的代码,我们推荐使用经过优化的pandas数据访问方式: .at, .iat, .loc, .iloc  .ix详情请参阅Indexing and Selecing Data  MultiIndex / Advanced Indexing

l  获取

1、 选择一个单独的列,这将会返回一个Series,等同于df.A

091345128373559.jpg

2、 通过[]进行选择,这将会对行进行切片

091345133534000.jpg

l  通过标签选择

1、 使用标签来获取一个交叉的区域

091345137124658.jpg

2、 通过标签来在多个轴上进行选择

091345141185600.jpg

3、 标签切片

091345145409771.jpg

4、 对于返回的对象进行维度缩减

091345148217985.jpg

5、 获取一个标量

091345152121400.jpg

6、 快速访问一个标量(与上一个方法等价)

091345156038112.jpg

l  通过位置选择

1、 通过传递数值进行位置选择(选择的是行)

091345157901057.jpg

2、 通过数值进行切片,与numpy/python中的情况类似

091345161506012.jpg

3、 通过指定一个位置的列表,与numpy/python中的情况类似

091345165562657.jpg

4、 对行进行切片

091345168379870.jpg

5、 对列进行切片

091345172753569.jpg

6、 获取特定的值

091345175566484.jpg

l  布尔索引

1、 使用一个单独列的值来选择数据:

091345178211469.jpg

2、 使用where操作来选择数据:

091345186962568.jpg

3、 使用isin()方法来过滤:

091345193068683.jpg 

l  设置

1、 设置一个新的列:

091345201181568.jpg

2、 通过标签设置新的值:

091345207902196.jpg

3、 通过位置设置新的值:

091345215409566.jpg

4、 通过一个numpy数组设置一组新值:

091345224314895.jpg

上述操作结果如下:

091345228375837.jpg

5、 通过where操作来设置新的值:

091345233065994.jpg

四、            缺失值处理

pandas中,使用np.nan来代替缺失值,这些值将默认不会包含在计算中,详情请参阅:Missing Data Section

1、  reindex()方法可以对指定轴上的索引进行改变/增加/删除操作,这将返回原始数据的一个拷贝:、

091345237126936.jpg

2、  去掉包含缺失值的行:

091345239935150.jpg

3、  对缺失值进行填充:

091345246189792.jpg

4、  对数据进行布尔填充:

091345250568193.jpg

五、            相关操作

详情请参与 Basic Section On Binary Ops

  • 统计(相关操作通常情况下不包括缺失值)

1、  执行描述性统计:

091345257125592.jpg

2、  在其他轴上进行相同的操作:

091345260408791.jpg

3、  对于拥有不同维度,需要对齐的对象进行操作。Pandas会自动的沿着指定的维度进行广播:

091345264623963.jpg

  • Apply

1、  对数据应用函数:

091345269314120.jpg

  • 直方图

具体请参照:Histogramming and Discretization

091345271968104.jpg


  • 字符串方法

Series对象在其str属性中配备了一组字符串处理方法,可以很容易的应用到数组中的每个元素,如下段代码所示。更多详情请参考:Vectorized String Methods.

091345275717290.jpg

六、            合并

Pandas提供了大量的方法能够轻松的对SeriesDataFramePanel对象进行各种符合各种逻辑关系的合并操作。具体请参阅:Merging section

  • Concat

091345281348419.jpg

091345286033875.jpg

  • Append 将一行连接到一个DataFrame上,具体请参阅Appending

091345291818232.jpg

七、            分组

对于”group by”操作,我们通常是指以下一个或多个操作步骤:

  • Splitting)按照一些规则将数据分为不同的组;

  • Applying)对于每组数据分别执行一个函数;

  • Combining)将结果组合到一个数据结构中;

详情请参阅:Grouping section

091345297909645.jpg

1、  分组并对每个分组执行sum函数:

091345300717859.jpg

2、  通过多个列进行分组形成一个层次索引,然后执行函数:

091345304788801.jpg

八、            Reshaping

详情请参阅 Hierarchical Indexing  Reshaping

  • Stack

091345309003973.jpg

091345313069616.jpg

091345316502344.jpg

091345321038272.jpg

可以从这个数据中轻松的生成数据透视表:

091345324628929.jpg

九、            时间序列

Pandas在对频率转换进行重新采样时拥有简单、强大且高效的功能(如将按秒采样的数据转换为按5分钟为单位进行采样的数据)。这种操作在金融领域非常常见。具体参考:Time Series section

091345327591373.jpg

1、  时区表示:

091345330874572.jpg

2、  时区转换:

091345334623758.jpg

3、  时间跨度转换:

091345336817458.jpg

4、  时期和时间戳之间的转换使得可以使用一些方便的算术函数。

091345339625672.jpg

十、            Categorical

0.15版本开始,pandas可以在DataFrame中支持Categorical类型的数据,详细 介绍参看:categorical introductionAPI documentation

091345345093572.jpg

1、  将原始的grade转换为Categorical数据类型:

091345350718998.jpg

2、  Categorical类型数据重命名为更有意义的名称:

091345356033669.jpg

3、  对类别进行重新排序,增加缺失的类别:

091345360565299.jpg

4、  排序是按照Categorical的顺序进行的而不是按照字典顺序进行:

091345365567213.jpg

5、  Categorical列进行排序时存在空的类别:

091345370871884.jpg

十一、           画图

具体文档参看:Plotting docs

091345377285053.jpg

对于DataFrame来说,plot是一种将所有列及其标签进行绘制的简便方法:

091345384624897.jpg

091345395406467.jpg

十二、           导入和保存数据

1、  写入csv文件:

091345399933395.jpg

2、  csv文件中读取:

091345404469323.jpg

1、  写入HDF5存储:

091345410091453.jpg

2、  HDF5存储中读取:

091345412433680.jpg

1、  写入excel文件:

091345417757350.jpg

2、  excel文件中读取:

091345420407037.jpg











本文转自 chengxuyonghu 51CTO博客,原文链接:http://blog.51cto.com/6226001001/1896504,如需转载请自行联系原作者
相关实践学习
简单用户画像分析
本场景主要介绍基于海量日志数据进行简单用户画像分析为背景,如何通过使用DataWorks完成数据采集 、加工数据、配置数据质量监控和数据可视化展现等任务。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
17天前
|
存储 开发者 Python
Python中的collections模块与UserDict:用户自定义字典详解
【4月更文挑战第2天】在Python中,`collections.UserDict`是用于创建自定义字典行为的基类,它提供了一个可扩展的接口。通过继承`UserDict`,可以轻松添加或修改字典功能,如在`__init__`和`__setitem__`等方法中插入自定义逻辑。使用`UserDict`有助于保持代码可读性和可维护性,而不是直接继承内置的`dict`。例如,可以创建一个`LoggingDict`类,在设置键值对时记录操作。这样,开发者可以根据具体需求定制字典行为,同时保持对字典内部管理的抽象。
|
7天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
18天前
|
存储 缓存 算法
Python中collections模块的deque双端队列:深入解析与应用
在Python的`collections`模块中,`deque`(双端队列)是一个线程安全、快速添加和删除元素的双端队列数据类型。它支持从队列的两端添加和弹出元素,提供了比列表更高的效率,特别是在处理大型数据集时。本文将详细解析`deque`的原理、使用方法以及它在各种场景中的应用。
|
4天前
|
Python
python学习14-模块与包
python学习14-模块与包
|
5天前
|
SQL 关系型数据库 数据库
Python中SQLite数据库操作详解:利用sqlite3模块
【4月更文挑战第13天】在Python编程中,SQLite数据库是一个轻量级的关系型数据库管理系统,它包含在一个单一的文件内,不需要一个单独的服务器进程或操作系统级别的配置。由于其简单易用和高效性,SQLite经常作为应用程序的本地数据库解决方案。Python的内置sqlite3模块提供了与SQLite数据库交互的接口,使得在Python中操作SQLite数据库变得非常容易。
|
10天前
|
索引 Python
「Python系列」Python operator模块、math模块
Python的`operator`模块提供了一系列内置的操作符函数,这些函数对应于Python语言中的内建操作符。使用`operator`模块可以使代码更加清晰和易读,同时也能提高性能,因为它通常比使用Python内建操作符更快。
27 0
|
15天前
|
数据采集 网络协议 API
python中其他网络相关的模块和库简介
【4月更文挑战第4天】Python网络编程有多个流行模块和库,如requests提供简洁的HTTP客户端API,支持多种HTTP方法和自动处理复杂功能;Scrapy是高效的网络爬虫框架,适用于数据挖掘和自动化测试;aiohttp基于asyncio的异步HTTP库,用于构建高性能Web应用;Twisted是事件驱动的网络引擎,支持多种协议和异步编程;Flask和Django分别是轻量级和全栈Web框架,方便构建不同规模的Web应用。这些工具使网络编程更简单和高效。
|
18天前
|
数据采集 数据挖掘 Python
Python中collections模块的Counter计数器:深入解析与应用
在Python的`collections`模块中,`Counter`是一个强大且实用的工具,它主要用于计数可哈希对象。无论是统计单词出现的频率,还是分析数据集中元素的分布情况,`Counter`都能提供快速且直观的结果。本文将深入解析`Counter`计数器的原理、用法以及它在实际应用中的价值。
|
19天前
|
Python
Python中的math和cmath模块:数学运算的得力助手
Python作为一种功能强大的编程语言,提供了丰富的数学运算功能。其中,math和cmath模块就是Python中用于数学运算的重要工具。math模块提供了基本的数学函数和常量,适用于实数运算;而cmath模块则提供了对复数运算的支持,使得Python在数学计算和工程应用中更加灵活和强大。
|
21天前
|
机器学习/深度学习 人工智能 数据可视化
基于Python的数据可视化技术在大数据分析中的应用
传统的大数据分析往往注重数据处理和计算,然而数据可视化作为一种重要的技术手段,在大数据分析中扮演着至关重要的角色。本文将介绍如何利用Python语言中丰富的数据可视化工具,结合大数据分析,实现更直观、高效的数据展示与分析。

热门文章

最新文章