c内存读写越界

简介:

问题分析:

这种情况是指:访问了你不应该/没有权限访问的内存地址空间,比如访问数组时越界;对动态内存访问时超出了申请的内存大小范围。下面的程序就是一个典型的数组越界问题。pt是一个局部数组变量,其大小为4,p初始指向pt数组的起始地址,但在对p循环叠加后,p超出了pt数组的范围,如果此时再对p进行写操作,那么后果将不可预期。

#include <stdlib.h>

#include <stdio.h>


int main(int argc,char *argv[])

{

int len = 4;

int* pt = (int*)malloc(len*sizeof(int));

int * p=pt;

for(int i=0;i<len;i++)

{

p++;

}

*p=5;

printf("the value of equal:%d",*p);

return 0;

}

gcc -Wall test.c -g -o test

valgrind --tool=memcheck --leak-check=full ./test


wKiom1kQeMChXaoeAACQs9qa9Cg356.jpg-wh_50

输出结果显示,在该程序的第15行,进行了非法的写操作;在第16行,进行了非法读操作。准确地发现了上述问题。



本文转自 skinglzw 51CTO博客,原文链接:http://blog.51cto.com/skinglzw/1923437,如需转载请自行联系原作者

相关文章
|
3月前
|
存储 程序员
【汇编】内存的读写与地址空间、寄存器及数据存储
【汇编】内存的读写与地址空间、寄存器及数据存储
136 1
【汇编】内存的读写与地址空间、寄存器及数据存储
|
4月前
|
存储 Java C#
C# | 使用Memory<T>高效地读写内存数据
Memory<T>是什么? 它是一种可变大小、可读写的内存块,可以安全地暴露给用户代码进行操作。 为什么要使用Memory<T>? 使用它有许多好处。最主要的是善用它可以提高代码的性能。因为Memory<T>是可变的,所以我们可以直接在内存中操作数据,而不需要进行额外的拷贝操作。 使用Memory<T>还可以减少垃圾回收的压力,因为我们不需要创建新的对象来存储数据。 Memory<T>还可以与Span<T>和ReadOnlySpan<T>类型一起使用,这些类型可以方便地对数据进行访问和操作。
34 0
|
4月前
|
存储 安全 数据安全/隐私保护
3.2 Windows驱动开发:内核CR3切换读写内存
CR3是一种控制寄存器,它是CPU中的一个专用寄存器,用于存储当前进程的页目录表的物理地址。在x86体系结构中,虚拟地址的翻译过程需要借助页表来完成。页表是由页目录表和页表组成的,页目录表存储了页表的物理地址,而页表存储了实际的物理页框地址。因此,页目录表的物理地址是虚拟地址翻译的关键之一。在操作系统中,每个进程都有自己的地址空间,地址空间中包含了进程的代码、数据和堆栈等信息。为了实现进程间的隔离和保护,操作系统会为每个进程分配独立的地址空间。在这个过程中,操作系统会将每个进程的页目录表的物理地址存储在它自己的CR3寄存器中。当进程切换时,操作系统会修改CR3寄存器的值,从而让CPU使用新的页
47 0
3.2 Windows驱动开发:内核CR3切换读写内存
|
10月前
|
存储
驱动开发:内核读写内存多级偏移
让我们继续在`《内核读写内存浮点数》`的基础之上做一个简单的延申,如何实现多级偏移读写,其实很简单,读写函数无需改变,只是在读写之前提前做好计算工作,以此来得到一个内存偏移值,并通过调用内存写入原函数实现写出数据的目的。以读取偏移内存为例,如下代码同样来源于本人的`LyMemory`读写驱动项目,其中核心函数为`WIN10_ReadDeviationIntMemory()`该函数的主要作用是通过用户传入的基地址与偏移值,动态计算出当前的动态地址。
84 0
|
10月前
|
存储 索引 Windows
驱动开发:内核物理内存寻址读写
在某些时候我们需要读写的进程可能存在虚拟内存保护机制,在该机制下用户的`CR3`以及`MDL`读写将直接失效,从而导致无法读取到正确的数据,本章我们将继续研究如何实现物理级别的寻址读写。首先,驱动中的物理页读写是指在驱动中直接读写物理内存页(而不是虚拟内存页)。这种方式的优点是它能够更快地访问内存,因为它避免了虚拟内存管理的开销,通过直接读写物理内存,驱动程序可以绕过虚拟内存的保护机制,获得对系统中内存的更高级别的访问权限。
6970 1
|
11月前
|
存储 C语言
内存的读写过程、现实模型及指针
内存的读写过程、现实模型及指针
114 0
内存的读写过程、现实模型及指针
|
11月前
驱动开发:内核读写内存浮点数
如前所述,在前几章内容中笔者简单介绍了`内存读写`的基本实现方式,这其中包括了`CR3切换`读写,`MDL映射`读写,`内存拷贝`读写,本章将在如前所述的读写函数进一步封装,并以此来实现驱动读写内存浮点数的目的。内存`浮点数`的读写依赖于`读写内存字节`的实现,因为浮点数本质上也可以看作是一个字节集,对于`单精度浮点数`来说这个字节集列表是4字节,而对于`双精度浮点数`,此列表长度则为8字节。
218 0
|
API
驱动开发:通过内存拷贝读写内存
内核中读写内存的方式有很多,典型的读写方式有CR3读写,MDL读写,以及今天要给大家分享的内存拷贝实现读写,拷贝读写的核心是使用`MmCopyVirtualMemory`这个内核API函数实现,通过调用该函数即可很容易的实现内存的拷贝读写。
333 0
驱动开发:通过内存拷贝读写内存
驱动开发:内核CR3切换读写内存
首先CR3是什么,CR3是一个寄存器,该寄存器内保存有页目录表物理地址(PDBR地址),其实CR3内部存放的就是页目录表的内存基地址,运用CR3切换可实现对特定进程内存地址的强制读写操作,此类读写属于有痕读写,多数驱动保护都会将这个地址改为无效,此时CR3读写就失效了,当然如果能找到CR3的正确地址,此方式也是靠谱的一种读写机制。
464 0
驱动开发:内核CR3切换读写内存
|
Linux Android开发
【Android 逆向】代码调试器开发 ( 代码调试器功能简介 | 设置断点 | 读写内存 | 读写寄存器 | 恢复运行 | Attach 进程 )
【Android 逆向】代码调试器开发 ( 代码调试器功能简介 | 设置断点 | 读写内存 | 读写寄存器 | 恢复运行 | Attach 进程 )
175 0