标签
PostgreSQL , json , 数组 , 多值 , 等值 , 多值 , 一棵树 , 多颗树 , gin , btree , gist
背景
PostgreSQL的数组、JSON等数据类型,给业务方带来了很多便利。但与此同时,优化也会变得更加的烧脑。
比如我们的业务方可能在数据库中存储了一些商品的信息,同时每个商品上会有若干的标签,每个标签使用一个JSON来表示。
数据结构就会变这样:
create table js(
gid int, -- 店铺ID
item int, -- 商品ID
prop jsonb[] -- 商品标签, json数组
);
AI 代码解读
示例数据
1, 1, ['{"id":10, "score":80}', '{"id":11, "score":70}', '{"id":21, "score":60}', .....]
1, 2, ['{"id":11, "score":50}', '{"id":13, "score":30}', '{"id":21, "score":80}', .....]
.....
AI 代码解读
每个jsonb[]里面有若干个JSON。
每个JSON里面有若干个ID。
每个ID对应一个SCORE。
业务方可能 要求查gid=? 并且包含某个ID,并且这个ID的SCORE在某个范围的数据。 以此找到某个店铺中满足某些标签条件的数据。
select * from js where gid=? and prop包含id=? 并且score between ? and ?的记录。
AI 代码解读
首先需要写一个UDF,来实现这类的查询。
create or replace function get_res(
jsonb[], -- 输入的JSONB数组
int, -- id
int, -- score最小值
int -- score最大值
) returns boolean as $$
declare
v_id int;
v_score int;
v_js jsonb;
begin
foreach v_js in array $1 loop
if (v_js->>'id')::int = $2 and (v_js->>'score')::float4 between $3 and $4 then
return true;
end if;
end loop;
return false;
end;
$$ language plpgsql strict;
AI 代码解读
最终SQL变成这样
select * from js where gid=? and get_res(prop, ?, ?, ?);
AI 代码解读
以上方法只能用到GID的索引,其他索引用不到。所以存在大量的CPU计算。高并发下必将成为瓶颈。
性能优化思路
假设已知prop里面最多有N个json元素,如何让数据可以精确的被索引检索,提高性能?
实际上,SQL可以改成这样:
select * from js where
(gid=? and prop[1]->>'id'=? and prop[1]->>'score' between x and x) or -- 每个JSON元素对应一颗树
(gid=? and prop[2]->>'id'=? and prop[2]->>'score' between x and x) or -- 每个JSON元素对应一颗树
...
AI 代码解读
或
select * from js where
(gid=? and prop[1]->>'id'=? and prop[1]->>'score' between x and x)
union all
select * from js where
(gid=? and prop[2]->>'id'=? and prop[2]->>'score' between x and x)
union all
...
;
AI 代码解读
虽然写了这么多OR的条件,实际上并不需要担心性能问题,因为用户提供的gid, id, score都是固定值,并且在同一条记录中id是唯一的,所以虽然扫描了多颗树,实际上最终检索时并没有产生IO或CPU放大(因为同一条记录一定只会在一颗树中被检索到)。
优化方法:
1、固定prop的json元素个数
2、针对每一个json元素,构建复合表达式索引
create index idx_js_1 on js (gid, ((prop[1]->>'id')::int), ((prop[1]->>'score')::float4));
create index idx_js_2 on js (gid, ((prop[2]->>'id')::int), ((prop[2]->>'score')::float4));
create index idx_js_3 on js (gid, ((prop[3]->>'id')::int), ((prop[3]->>'score')::float4));
create index idx_js_4 on js (gid, ((prop[4]->>'id')::int), ((prop[4]->>'score')::float4));
create index idx_js_5 on js (gid, ((prop[5]->>'id')::int), ((prop[5]->>'score')::float4));
create index idx_js_6 on js (gid, ((prop[6]->>'id')::int), ((prop[6]->>'score')::float4));
create index idx_js_7 on js (gid, ((prop[7]->>'id')::int), ((prop[7]->>'score')::float4));
create index idx_js_8 on js (gid, ((prop[8]->>'id')::int), ((prop[8]->>'score')::float4));
create index idx_js_9 on js (gid, ((prop[9]->>'id')::int), ((prop[9]->>'score')::float4));
create index idx_js_10 on js (gid, ((prop[10]->>'id')::int), ((prop[10]->>'score')::float4));
AI 代码解读
3、改写SQL
4、使用UDF,拼接动态SQL。或者程序端拼接动态SQL。
create or replace function get_js(
int, -- loops, 一个prop里多少个json元素
int, -- gid
int, -- json id
int, -- json score 最小值
int -- json score 最大值
) returns setof js as $$
declare
sql text := 'select * from js where ';
begin
for i in 1..$1 loop
sql := format($_$ %s (gid=%s and (prop[%s]->>'id')::int=%s and (prop[%s]->>'score')::float4 between %s and %s) union all select * from js where $_$, sql, $2, i, $3, i, $4, $5);
end loop;
sql := rtrim(sql, 'union all select * from js where ');
-- raise notice '%', sql;
return query execute sql;
end;
$$ language plpgsql strict;
AI 代码解读
查询动态拼接:
postgres=# select * from get_js(10,1,1,10,20);
gid | item | prop
-----+------+------
(0 rows)
AI 代码解读
索引被正确使用
postgres=# explain select * from js where (gid=1 and (prop[1]->>'id')::int=1 and (prop[1]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[2]->>'id')::int=1 and (prop[2]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[3]->>'id')::int=1 and (prop[3]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[4]->>'id')::int=1 and (prop[4]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[5]->>'id')::int=1 and (prop[5]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[6]->>'id')::int=1 and (prop[6]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[7]->>'id')::int=1 and (prop[7]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[8]->>'id')::int=1 and (prop[8]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[9]->>'id')::int=1 and (prop[9]->>'score')::float4 between 10 and 20) union all select * from js where (gid=1 and (prop[10]->>'id')::int=1 and (prop[10]->>'score')::float4 between 10 and 20);
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------
Append (cost=0.15..21.87 rows=10 width=40)
-> Index Scan using idx_js_1 on js (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[1] ->> 'id'::text))::integer = 1) AND (((prop[1] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[1] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_2 on js js_1 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[2] ->> 'id'::text))::integer = 1) AND (((prop[2] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[2] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_3 on js js_2 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[3] ->> 'id'::text))::integer = 1) AND (((prop[3] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[3] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_4 on js js_3 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[4] ->> 'id'::text))::integer = 1) AND (((prop[4] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[4] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_5 on js js_4 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[5] ->> 'id'::text))::integer = 1) AND (((prop[5] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[5] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_6 on js js_5 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[6] ->> 'id'::text))::integer = 1) AND (((prop[6] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[6] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_7 on js js_6 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[7] ->> 'id'::text))::integer = 1) AND (((prop[7] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[7] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_8 on js js_7 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[8] ->> 'id'::text))::integer = 1) AND (((prop[8] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[8] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_9 on js js_8 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[9] ->> 'id'::text))::integer = 1) AND (((prop[9] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[9] ->> 'score'::text))::real <= '20'::doubleprecision))
-> Index Scan using idx_js_10 on js js_9 (cost=0.15..2.18 rows=1 width=40)
Index Cond: ((gid = 1) AND (((prop[10] ->> 'id'::text))::integer = 1) AND (((prop[10] ->> 'score'::text))::real >= '10'::double precision) AND (((prop[10] ->> 'score'::text))::real <= '20'::doubleprecision))
(21 rows)
AI 代码解读
5、如果元素个数增加,需要新增复合表达式索引
注意这个方法提到的索引较多,所以DML性能会受到一定的影响,但是查询性能提升到了极致。
其他知识点
如果你不想用复合索引,可以改成单列表达式索引。
思路与这篇类似:
《PostgreSQL UDF实现tsvector(全文检索), array(数组)多值字段与scalar(单值字段)类型的整合索引(类分区索引) - 单值与多值类型复合查询性能提速100倍+ 案例》
等值+范围搜索,都可以使用这种思路。
例子
create index idx_js_1 on js ( (gid||'_'||prop[1]->>'id'||'_'||lpad(prop[1]->>'score',4,'0')) );
.............
AI 代码解读
select * from js where (gid||'_'||prop[1]->>'id'||'_'||lpad(prop[1]->>'score',4,'0')) between '1_1_0020' and '1_1_0100'
union all
select * from js where (gid||'_'||prop[2]->>'id'||'_'||lpad(prop[2]->>'score',4,'0')) between '1_1_0020' and '1_1_0100'
union all
....;
AI 代码解读
解释:
把gid, prop->>id都合成到了索引里面
最关键的还有一个lpad,因为分数可能位数不同,导致TEXT范围查询不符合预期,使用LPAD可以将这个位数填平,达到与数值一致的顺序效果。
pad后效果如下:
postgres=# select '90' > '100';
?column?
----------
t
(1 row)
postgres=# select '090' > '100';
?column?
----------
f
(1 row)
AI 代码解读
性能提升测试
1、建表
create table js(
gid int, -- 店铺ID
item int, -- 商品ID
prop jsonb[], -- 商品标签, json数组
primary key (gid,item)
);
AI 代码解读
2、构造数据
1万个GID,每个GID 10万个ITEM。
每个PROP 10个JSONB,每个JSONB中ID取值范围0-1000,SCORE取值区间0-100
create or replace function ins(int, int) returns void as $$
declare
begin
insert into js values (
$1, $2,
array[
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb,
format('{"id":%s, "score":%s}', (random()*1000)::int, (random()*100)::int)::jsonb
]
) on conflict do nothing;
end;
$$ language plpgsql strict;
AI 代码解读
vi test.sql
\set gid random(1,10000)
\set item random(1,100000)
select ins(:gid, :item);
AI 代码解读
写入10亿记录
pgbench -M prepared -n -r -P 1 -f ./test.sql -c 50 -j 50 -t 20000000
AI 代码解读
3、索引
psql -c "create index idx_js_1 on js (gid, ((prop[1]->>'id')::int), ((prop[1]->>'score')::float4));" &
psql -c "create index idx_js_2 on js (gid, ((prop[2]->>'id')::int), ((prop[2]->>'score')::float4));" &
psql -c "create index idx_js_3 on js (gid, ((prop[3]->>'id')::int), ((prop[3]->>'score')::float4));" &
psql -c "create index idx_js_4 on js (gid, ((prop[4]->>'id')::int), ((prop[4]->>'score')::float4));" &
psql -c "create index idx_js_5 on js (gid, ((prop[5]->>'id')::int), ((prop[5]->>'score')::float4));" &
psql -c "create index idx_js_6 on js (gid, ((prop[6]->>'id')::int), ((prop[6]->>'score')::float4));" &
psql -c "create index idx_js_7 on js (gid, ((prop[7]->>'id')::int), ((prop[7]->>'score')::float4));" &
psql -c "create index idx_js_8 on js (gid, ((prop[8]->>'id')::int), ((prop[8]->>'score')::float4));" &
psql -c "create index idx_js_9 on js (gid, ((prop[9]->>'id')::int), ((prop[9]->>'score')::float4));" &
psql -c "create index idx_js_10 on js (gid, ((prop[10]->>'id')::int), ((prop[10]->>'score')::float4));" &
AI 代码解读
4、原始方法压测
vi test1.sql
\set gid random(1,10000)
\set id random(0,1000)
\set l random(0,50)
\set u random(51,100)
select * from js where gid=:gid and get_res(prop, :id, :l, :u);
AI 代码解读
pgbench -M prepared -n -r -P 1 -f ./test1.sql -c 56 -j 56 -T 120
AI 代码解读
transaction type: ./test1.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 11517
latency average = 582.923 ms
latency stddev = 109.062 ms
tps = 95.708298 (including connections establishing)
tps = 95.927842 (excluding connections establishing)
statement latencies in milliseconds:
0.004 \set gid random(1,10000)
0.001 \set id random(0,1000)
0.001 \set l random(0,50)
0.001 \set u random(51,100)
582.917 select * from js where gid=:gid and get_res(prop, :id, :l, :u);
AI 代码解读
top - 12:37:42 up 28 days, 17:25, 3 users, load average: 47.06, 19.61, 10.53
Tasks: 542 total, 58 running, 484 sleeping, 0 stopped, 0 zombie
%Cpu(s): 95.6 us, 4.3 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 23094336+total, 85957776 free, 5347196 used, 13963840+buff/cache
KiB Swap: 0 total, 0 free, 0 used. 17652979+avail Mem
AI 代码解读
5、优化方法压测
vi test2.sql
\set gid random(1,10000)
\set id random(0,1000)
\set l random(0,50)
\set u random(51,100)
select * from get_js(10,:gid, :id, :l, :u);
AI 代码解读
pgbench -M prepared -n -r -P 1 -f ./test2.sql -c 56 -j 56 -T 120
AI 代码解读
transaction type: ./test2.sql
scaling factor: 1
query mode: prepared
number of clients: 56
number of threads: 56
duration: 120 s
number of transactions actually processed: 2042359
latency average = 3.290 ms
latency stddev = 0.300 ms
tps = 16999.278637 (including connections establishing)
tps = 17000.090714 (excluding connections establishing)
statement latencies in milliseconds:
0.002 \set gid random(1,10000)
0.001 \set id random(0,1000)
0.000 \set l random(0,50)
0.001 \set u random(51,100)
3.288 select * from get_js(10,:gid, :id, :l, :u);
AI 代码解读
top - 12:45:12 up 28 days, 17:32, 2 users, load average: 22.72, 23.75, 17.37
Tasks: 537 total, 58 running, 479 sleeping, 0 stopped, 0 zombie
%Cpu(s): 93.8 us, 6.2 sy, 0.0 ni, 0.0 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 23094336+total, 49231168 free, 8543336 used, 17316886+buff/cache
KiB Swap: 0 total, 0 free, 0 used. 14191040+avail Mem
AI 代码解读
小结
1、使用本文提到的多颗树APPEND的方法,没有浪费一丝丝CPU。性能提升N倍。
数据量 | CASE | TPS | RT | CPU占比 |
---|---|---|---|---|
10亿 | 原始方法 | 96 | 583 毫秒 | 100% |
10亿 | 优化方法 | 17000 | 3.3 毫秒 | 100% |
2、数据库内核层面优化建议,分区索引。内核层实现一个btree索引对应多棵树,解决数组内多值点查与区间查询的问题。
3、目前PostgreSQL gin, gist索引对多值类型、数组、JSON的检索支持,只能支持到 包含、相交 层面,无法做到值的区间查找,如果有区间查找的需求,需要改进倒排树以及开发对应的OPS。
https://www.postgresql.org/docs/10/static/datatype-json.html
rum索引接口已经有一点点这个意思
https://github.com/postgrespro/rum
参考
《PostgreSQL UDF实现tsvector(全文检索), array(数组)多值字段与scalar(单值字段)类型的整合索引(类分区索引) - 单值与多值类型复合查询性能提速100倍+ 案例》
对于附加内容中提到的合并索引,假设score里面如果是浮点的话,需要重新设计一下索引的表达式,按整数的位数来进行PAD。