mysql5.6之key_buffer_size优化设置

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介:

key_buffer_size指定索引缓冲区的大小,它决定索引处理的速度,尤其是索引读的速度。通过检查状态值Key_read_requests和Key_reads,可以知道key_buffer_size设置是否合理。比例key_reads /key_read_requests应该尽可能的低,至少是1:100,1:1000更好(上述状态值可以使用SHOW STATUS LIKE ‘key_read%'获得)。

key_buffer_size只对MyISAM表起作用。即使你不使用MyISAM表,但是内部的临时磁盘表是MyISAM表,也要使用该值。可以使用检查状态值created_tmp_disk_tables得知详情。

对于1G内存的机器,如果不使用MyISAM表,推荐值是16M(8-64M)


提升性能的建议:

1.如果opened_tables太大,应该把my.cnf中的table_cache变大

2.如果Key_reads太大,则应该把my.cnf中key_buffer_size变大.可以用Key_reads/Key_read_requests计算出cache失败率

3.如果Handler_read_rnd太大,则你写的SQL语句里很多查询都是要扫描整个表,而没有发挥键的作用

4.如果Threads_created太大,就要增加my.cnf中thread_cache_size的值.可以用Threads_created/Connections计算cache命中率

5.如果Created_tmp_disk_tables太大,就要增加my.cnf中tmp_table_size的值,用基于内存的临时表代替基于磁盘的 


mysql> show variables like 'key_buffer_size';  


+-----------------+------------+  


| Variable_name | Value |  


+-----------------+------------+  


| key_buffer_size | 536870912 |  


+-----------------+------------+  

分配了512MB内存给mysql key_buffer_size,我们再看一下key_buffer_size的使用情况:

mysql> show global status like 'key_read%';  


+------------------------+-------------+  


| Variable_name | Value |  


+------------------------+-------------+  


| Key_read_requests | 27813678764 |  


| Key_reads | 6798830 |  


+------------------------+-------------+  


 一共有27813678764个索引读取请求,有6798830个请求在内存中没有找到直接从硬盘读取索引,计算索引未命中缓存的概率:

key_cache_miss_rate = Key_reads / Key_read_requests * 100%

比如上面的数据,key_cache_miss_rate为0.0244%,4000个索引读取请求才有一个直接读硬盘,已经很BT了,key_cache_miss_rate在0.1%以下都很好(每1000个请求有一个直接读硬盘),如果key_cache_miss_rate在0.01%以下的话,key_buffer_size分配的过多,可以适当减少。


MySQL服务器还提供了key_blocks_*参数:

mysql> show global status like 'key_blocks_u%';  


+------------------------+-------------+  


| Variable_name | Value |  


+------------------------+-------------+  


| Key_blocks_unused | 0 |  


| Key_blocks_used | 413543 |  


+------------------------+-------------+  

Key_blocks_unused表示未使用的缓存簇(blocks)数,Key_blocks_used表示曾经用到的最大的blocks数,比如这台服务器,所有的缓存都用到了,要么增加key_buffer_size,要么就是过渡索引了,把缓存占满了。比较理想的设置:

Key_blocks_used / (Key_blocks_unused + Key_blocks_used) * 100% ≈ 80%


参考资料:https://yq.aliyun.com/ziliao/125858



 本文转自 wjw555 51CTO博客,原文链接:http://blog.51cto.com/wujianwei/1969471

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
344
分享
相关文章
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
MySQL进阶突击系列(07) 她气鼓鼓递来一条SQL | 怎么看执行计划、SQL怎么优化?
在日常研发工作当中,系统性能优化,从大的方面来看主要涉及基础平台优化、业务系统性能优化、数据库优化。面对数据库优化,除了DBA在集群性能、服务器调优需要投入精力,我们研发需要负责业务SQL执行优化。当业务数据量达到一定规模后,SQL执行效率可能就会出现瓶颈,影响系统业务响应。掌握如何判断SQL执行慢、以及如何分析SQL执行计划、优化SQL的技能,在工作中解决SQL性能问题显得非常关键。
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
114 15
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
基于SQL Server / MySQL进行百万条数据过滤优化方案
对百万级别数据进行高效过滤查询,需要综合使用索引、查询优化、表分区、统计信息和视图等技术手段。通过合理的数据库设计和查询优化,可以显著提升查询性能,确保系统的高效稳定运行。
35 9
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
80 9
从MySQL优化到脑力健康:技术人与效率的双重提升
聊到效率这个事,大家应该都挺有感触的吧。 不管是技术优化还是个人状态调整,怎么能更快、更省力地完成事情,都是我们每天要琢磨的事。
66 23
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
38 3
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。