第二章 垃圾收集器与内存分配策略

简介: 一、前言 上一章节主要是Java内存分区与内存溢出的基础讲解,着篇主要讲解一些策略与GC等等,我的知识更新也是按照《深入理解Java虚拟机》来进行的,不足之处多鞭打。

一、前言

上一章节主要是Java内存分区与内存溢出的基础讲解,着篇主要讲解一些策略与GC等等,我的知识更新也是按照《深入理解Java虚拟机》来进行的,不足之处多鞭打。
     根据内存模型,虚拟机栈、本地方法、程序计数器都是线程私有的,在创建之初栈深度等已经确定,方法结束的时候就回收。所以主要讨论的是 Java堆与方法区(虽然JDK8没有方法了)。

二、垃圾回收与策略

2.1概述

Java堆中注意存储对象,我们关心的结果是对象是否已经“死去”。如下图JVM是通过是否可达Reachability Analysis分析。
提示:标记两次就“死亡”
Java 语言中,GC Root的对象有以下几种:
  • 虚拟机栈中(帧栈中的本地变量表)引用的对象
  • 方法区(1.8堆)中类静态属性引用的对象
  • 方法区(1.8堆)常量引用的对象
  • 方法的native(1.8本地内存)引用的对象
引用对象定义:
  • 强引用Strong Reference,主要存在就不会回收对象。
Object obj=new Object();
  • 软引用Soft Reference,一些有非必需的对象。内存溢之前进行软引用回收。
String value = new String(“sy”);
SoftReference sfRefer = new SoftReference (value );
sfRefer .get();//可以获得引用对象值
  • 弱引用weekReference是非必需对象,比软引用更弱。下一次内存回收,回收掉弱引用。
String value = new String(“sy”);
WeakReference weakRefer = new WeakReference(value );

System.gc();

weakRefer.get();//null
  • 虚引用PhantomReference,设置虚引用就是为了得到一个回收通知。

2.2 垃圾回收算法

    2.2.1 标记法-清除算法

标记需要回收的空间。缺点:是空间不连续,效率也很低下。

             2.2.2 复制算法

将内存分为两块,每次只使用其中一块,清理复制到另一块内存,一般采用这种算法(新生代对象%98“朝生夕死”)。缺点:内存变小
                 内存划分为Eden空间(大80%)、Sruvivor空间2块(小10%)。模式比例8:1;每次新生代为90%。

2.2.3 标记法-清除算法

所有存活对象向一端移动,清理另一端。

2.2.4 Hotspot算法实现

1、记录一下内存偏移量进入OopMap,记录点不能是全部的 全局性引用、执行上下文,应该是一些safepoiont ,这个安全点主要是 方法调用、循环跳转、异常跳转等。
2、虚拟机采用voluntary suspension 主动式中断,主动轮询到安全点,主动挂起进行枚举Gc root。
3、safe region 安全区域是安全点的扩展,离开安全区域进行枚举Gc Root。

2.3 垃圾收集器

2.3.1 Serial 收集器-串行

-新生代串行回收器

              (1)Serial特点:
			-单线程串行搜集
			-独占式垃圾回收
			-垃圾回收需要stop the world
			-复制算法
			-适合cpu等硬件不是很好的场合
	      (2)参数
		    -XX:+UseSerialGC  指定新生代使用串行搜集器

-老年代串行回收器

	(1)Serial old特点:
				-单线程、独占与新生代一样
				-标记整理算法
				-老年代回收时间比新生代时间更长,应用程序停顿更长
		 (2)设置参数:
				-XX:UseSerialGC 新生代,老年代都使用串行回收器
				-XX:UseParNeGC 新生代使用ParNew,老年代使用串行
				-XX:UseParalleGC 新生代使用ParallelGC回收,老年代使用串行回收


2.3.2 并行收集器



-新生代-ParNew回收器

		(1)特点:
			-串行回收变为多线程
			-使用复制方法
			-GC回收仍然会暂停,但是多线程的效率会提供(多核情况)
		(2)设置参数:
			-XX:UseParNewGc 新生代使用ParNew回收器,老年代使用串行Serial回收器
			-XX:UseConcMarksSweepGc 新生代使用ParNew,老年代使用CMS回收器
			-XX:ParallerGCThread=n 新生代回收使用线程数据量,cpu核数小于8的时候,等于cpu的数量,高于8时候,  3+((5*cpu_count)/8)

-新生代-Paraller Scavenge回收器

			(1)特点:
				-并行回收与ParNew一样,但是更注重吞吐量。
				-使用复制算法
				-支持自适应GC调节
			 (2)设置参数:
				-XX:UseParallerGC 新生代使用ParallerGC,老年代使用串行回收。
				-XX:UseParallerOldGC 新生代使用ParallelGC,老年代使用ParallelOld
				-XX:MaxGCPauseMillis=n  最大停顿时间
				-XX:GCTimeRatio=n (0-100之间)   设置n%的时间来进行垃圾回收
				-XX:UseAdaptiveSizePolicy  自动模式

-老年代ParallelOldGC 回收器

			(1)特点:
				-与新生代ParallelGC回收器一样,关注老年代的吞吐量。
				-使用标记-压缩算法
			(2)设置参数:
				-XX:UseParallelOldGC 新生代回收器,老年代使用ParallelOldGC回收器
				-XX:ParallelGCThreads=n cpu核与新生代一样

-老年代CMS回收器

		(1)特点:
			-“并发”运行回收
			-标记清除算法-有碎片
			-CMS主要关注系统停顿时间
			-用于大多数B/S服务器,默认线程数量(cpu_count+3)/4
		(2)主要步骤:
			-1初始化标记、2并发标记、3、预备清理 4、重新标记 5、并发清理 6、并发重置
                 (3) 设置参数:
			-XX:CMSPrecleaningEnabled 关闭预备清理
			-XX:UseConcMarksSweepGC  老年代使用CMS,新生代使用ParNew
			-XX:ConcGCThreads=n 设置并发线程数
			-XX:ParallelCMSTheads=n 设置并发线程数
			-XX:CMSInsitiaingOccupancyFeaction=n 1.7默认回收比例我老年代92%
			-XX:UseCMSCompactAtFullCollection 开启碎片整理,但是会增加停顿时间
			-XX:CMSFullGCsBeforeCompation=n  用于指定进行多少次CMS回收后, 再进行一次内存压缩 
  			-XX:+CMSParallelRemarkEnabled  在使用UseParNewGC 的情况下, 尽量减少 mark 的时间 
  			-XX:+UseCMSInitiatingOccupancyOnly  表示只有达到阀值时才进行CMS回收
			

-G1回收器

		替代CMS的垃圾回收器。

		(1)特点:
			-并行与并发
			-分代收集
			-空间整合
			-预测停顿

2.3 理解GC日志

[GC (System.gc()) [PSYoungGen: 9339K->800K(76288K)] 9339K->808K(251392K), 0.0014161 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 
[Full GC (System.gc()) [PSYoungGen: 800K->0K(76288K)] [ParOldGen: 8K->579K(175104K)] 808K->579K(251392K), 
[Metaspace: 3032K->3032K(1056768K)], 0.0049896 secs] [Times: user=0.02 sys=0.00, real=0.01 secs]

  • 1、“[GC” 与 “[Full GC”为这次垃圾回收的停顿类型,如果有Full表示发送了“stop-the-world”
  • 2、[GC (System.gc())为调用了System.gc()
  • 3、接下来表示垃圾收集器“[DefNew”=“Default New Generation”----》用的是serial收集器
  • "[Parnew"="Paraller New Genneration"---》用的是Parnew收集器
  • “[PsYoungGen”==》用的 是Parallel Scavenge 收集器
  • 3.1 紧接着的”9339K->800K(76288L)“=="GC前内存使用容量->GC后内存使用容量(该内存区域总容量)",
  • 4、方括号后面”9339->808K(251392)“=="GC前Java堆使用容量->GC后Java堆使用容量(Java堆总容量)"
  • 5、”0.0014161“==”该区域GC所占用的时间,单位为秒“
  • 6、"[Times: user=0.00 sys=0.00, real=0.00 secs]"=="用户消耗的CPU时间,内核消耗的CPU时间,真正从头到尾的时间"

2.4 垃圾回收常用参数

参  数  描  述
 UseSerialGC  虚拟机运行在Client 模式下的默认值,打开此开关后,使用Serial +Serial Old 的收集器组合进行内存回收
 
 UseParNewGC  打开此开关后,使用ParNew + Serial Old 的收集器组合进行内存回收
 UseConcMarkSweepGC  打开此开关后,使用ParNew + CMS + Serial Old 的收集器组合进行内存
回收。Serial Old 收集器将作为CMS 收集器出现Concurrent Mode Failure失败后的后备收集器使用
 UseParallelGC  虚拟机运行在Server 模式下的默认值,打开此开关后,使用Parallel
Scavenge + Serial Old(PS MarkSweep)的收集器组合进行内存回收
 UseParallelOldGC  打开此开关后,使用Parallel Scavenge + Parallel Old 的收集器组合进行内存回收
 SurvivorRatio  新生代中Eden 区域与Survivor 区域的容量比值, 默认为8, 代表
Eden :Survivor=8∶1
 PretenureSizeThreshold  直接晋升到老年代的对象大小,设置这个参数后,大于这个参数的对象
将直接在老年代分配
 MaxTenuringThreshold  晋升到老年代的对象年龄。每个对象在坚持过一次Minor GC 之后,年
龄就加1,当超过这个参数值时就进入老年代
 UseAdaptiveSizePolicy  动态调整Java 堆中各个区域的大小以及进入老年代的年龄
 HandlePromotionFailure  是否允许分配担保失败,即老年代的剩余空间不足以应付新生代的整个
Eden 和Survivor 区的所有对象都存活的极端情况
 ParallelGCThreads  设置并行GC 时进行内存回收的线程数
 GCTimeRatio  GC 时间占总时间的比率,默认值为99,即允许1% 的GC 时间。仅在

2.5内存分配与回收策略

2.5.1 对象优先在Eden 分配

实例代码:
private static  final int _1MB=1024*1024;

    /**
     * -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
     * java堆大小为20M 10M分配给新生代 10M分配老年代
     * 新生代中国eden与suivivor区比例为8:1
     *  -发现新生代已经用了6M+souvivor@2M=8M,
     *  不够分配最后的4M,所以发生一次GC,老年代转移4M空间-40% 可以发现正确性
     */
    public static void testAllocation(){
        byte[] allocation1,allocation2,allocation3,allocation4;
        allocation1=new byte[2*_1MB];
        allocation2=new byte[2*_1MB];
        allocation3=new byte[2*_1MB];
        allocation4=new byte[4*_1MB];//出现一次minor gc 新生代gc
    }

    public static void main(String[] args) {
        testAllocation();
    }

GC信息:
[GC (Allocation Failure) [PSYoungGen: 6359K->818K(9216K)] 6359K->4922K(19456K), 0.0031997 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 
Heap
 PSYoungGen      total 9216K, used 7284K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)
  eden space 8192K, 78% used [0x00000007bf600000,0x00000007bfc50508,0x00000007bfe00000)
  from space 1024K, 79% used [0x00000007bfe00000,0x00000007bfeccb90,0x00000007bff00000)
  to   space 1024K, 0% used [0x00000007bff00000,0x00000007bff00000,0x00000007c0000000)
 ParOldGen       total 10240K, used 4104K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)
  object space 10240K, 40% used [0x00000007bec00000,0x00000007bf002020,0x00000007bf600000)
 Metaspace       used 3023K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 329K, capacity 388K, committed 512K, reserved 1048576K

2.5.2 大对象直接进入老年代

实例代码:
package com.ycy.java.gc;

/**
 * @Copyright © 2017 . All rights reserved. Created with IntelliJ IDEA.
 * @project: untitled
 * @Package: com.ycy.java.gc
 * @Description:
 * @autho: ycy
 * @Date: 2017-10-19
 * @Time: 23:13
 */
public class TestGc {
    private static  final int _1MB=1024*1024;

    /**
     * vgs:  -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8 -XX:PretenureSizeThreshold=3145700
     * object space 10240K, 60% 直接进入老年代,因为大于设置的3145700
     * Server模式下默认:Serial old+Parallel Scavenger
     * -XX:PretenureSizeThreshold=3145700不认识这个参数,但是一样大对象进入老年区 
     */
    public static  void testPretenureSizeThreshold(){
        byte[] allocation;
        allocation=new byte[6*_1MB];//老年代中
    }

    public static void main(String[] args) {
        //对象优先分配Eden
//        testAllocation();
        //大对象直接进入老年代
        testPretenureSizeThreshold();
    }
}

GC信息:
Heap
 PSYoungGen      total 9216K, used 2450K [0x00000007bf600000, 0x00000007c0000000, 0x00000007c0000000)
  eden space 8192K, 29% used [0x00000007bf600000,0x00000007bf864bb8,0x00000007bfe00000)
  from space 1024K, 0% used [0x00000007bff00000,0x00000007bff00000,0x00000007c0000000)
  to   space 1024K, 0% used [0x00000007bfe00000,0x00000007bfe00000,0x00000007bff00000)
 ParOldGen       total 10240K, used 6144K [0x00000007bec00000, 0x00000007bf600000, 0x00000007bf600000)
  object space 10240K, 60% used [0x00000007bec00000,0x00000007bf200010,0x00000007bf600000)
 Metaspace       used 3022K, capacity 4496K, committed 4864K, reserved 1056768K
  class space    used 329K, capacity 388K, committed 512K, reserved 1048576K

2.5.3 长期存活的对象进入老年代

  如果对象在Eden出生到一次Minor GC新生代GC之后仍然存活,并且在Survivor中容纳,移到Survivor,这个时候年龄1岁,默认阀值为15岁,就会移动到老年代。

示例代码:
    /**
     * -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8  -XX:MaxTenuringThreshold=0
     * 修改-XX:MaxTenuringThreshold=15 观察对象存在新生代
     */
    public static  void testTenuringThreshold(){
        byte[] allocation1,allocation2,allocation3,
                allocation4,allocation5,allocation6;
        allocation1=new byte[1*_1MB];
        allocation2=new byte[1*_1MB];
        allocation3=new byte[1*_1MB];
        allocation4=new byte[1*_1MB];
        allocation5=new byte[1*_1MB];
        allocation5=null;
        allocation5=new byte[1*_1MB];
    }

GC结果 :XX:MaxTenuringThreshold=0
from space 1024K, 0% used [0x00000007bfe00000,0x00000007bfe00000,0x00000007bff00000)
GC结果 :XX:MaxTenuringThreshold=15
from space 1024K, 75% 

2.5.4 长期存活的对象进入老年代

相同年龄对象内存之和大于Survivor的一半,年龄大于或者等于该年龄的对象,直接进入老年代。
上面代码蒋年龄限制设置1-15之间,你会发现,对象直接进入老年代。
  object space 10240K, 55% used 

2.5.5 长期存活的对象进入老年代

1.6之后,老年代的连续空间大于新生代的对象的总大小,或者历次晋升的平均大小,进行Minor GC ,否则full GC。意思就是老年代大于新生代或进行一次Minor GC。

三、总结

 主要讲解垃圾回收器的特点和运作原理,验证了一些虚拟机 分配原则。








目录
相关文章
|
25天前
|
编解码 算法 Java
构建高效的Android应用:内存优化策略详解
随着智能手机在日常生活和工作中的普及,用户对移动应用的性能要求越来越高。特别是对于Android开发者来说,理解并实践内存优化是提升应用程序性能的关键步骤。本文将深入探讨针对Android平台的内存管理机制,并提供一系列实用的内存优化技巧,以帮助开发者减少内存消耗,避免常见的内存泄漏问题,并确保应用的流畅运行。
|
7天前
|
算法 安全 Java
内存分配与回收策略
内存分配与回收策略
14 0
内存分配与回收策略
|
10天前
|
NoSQL 安全 Redis
redis内存限制与淘汰策略
Redis内存管理包括限制和淘汰策略。`maxmemory`配置参数决定内存上限,无设置时64位系统默认不限制,可能导致系统资源耗尽,生产环境建议设定合理值。当内存满时,未设置淘汰策略会导致写入错误。Redis提供8种淘汰策略,如LRU(最近最少使用)和LFU(最不经常使用),以及随机或基于过期时间的删除。需根据数据重要性、访问频率和一致性选择合适策略。
13 0
|
17天前
|
存储 缓存 NoSQL
Redis的内存淘汰策略是什么?
【4月更文挑战第2天】Redis内存淘汰策略在内存满时,通过删除旧数据为新数据腾空间。策略包括:volatile-lru/LFU(基于LRU/LFU算法淘汰有过期时间的键),volatile-random/ttl(随机/按TTL淘汰),allkeys-lru/LFU(所有键的LRU/LFU),allkeys-random(随机淘汰所有键),以及noeviction(不淘汰,返回错误)。选择策略要考虑访问模式、数据重要性和性能需求。
|
29天前
|
监控 算法 Android开发
安卓应用开发中的内存优化策略
【2月更文挑战第30天】随着移动设备性能的不断提升,用户对应用程序的体验要求越来越高。在安卓应用开发中,内存管理是影响应用性能和用户体验的关键因素之一。本文将探讨针对安卓平台的内存优化技巧,包括避免内存泄漏、合理使用数据结构和算法、优化图片资源处理等策略,旨在帮助开发者提升应用性能和稳定性。
19 1
|
1月前
|
监控 Java 编译器
Go语言内存与并发性能综合优化策略
【2月更文挑战第11天】Go语言以其高效的并发处理能力和简洁的内存管理机制成为了现代软件开发中的热门选择。然而,在实际应用中,如何综合优化Go程序的内存使用和并发性能,仍然是一个值得探讨的话题。本文将深入探讨Go语言内存与并发性能的综合优化策略,包括内存布局优化、并发模式设计、资源池化以及性能监控与分析等方面,旨在帮助开发者全面提升Go程序的整体性能。
|
2月前
|
存储 缓存 Java
Go语言中的内存分配与释放策略
【2月更文挑战第5天】本文旨在深入探讨Go语言中的内存分配与释放策略,包括其背后的设计理念、内存分配器的实现细节以及内存释放的时机和方式。通过了解这些内容,读者可以更好地理解Go语言的内存管理特点,并在实际开发中更好地利用这些特性优化程序性能。
|
2月前
|
存储 Rust 安全
Rust中避免不必要的内存分配与复制的优化策略
在Rust编程语言中,内存分配与复制是常见的性能瓶颈。本文深入探讨了如何在Rust中避免不必要的内存分配和复制,包括使用栈分配、借用与所有权、智能指针、以及零拷贝策略等。通过理解这些概念并应用相应的优化策略,Rust开发者可以显著提高代码的性能和效率。
|
3月前
|
存储 NoSQL Unix
Redis过期键及内存淘汰策略
Redis过期键及内存淘汰策略
|
4月前
|
NoSQL 算法 Redis
认识一下Redis的内存溢出策略
认识一下Redis的内存溢出策略
71 0