Linux多线程实践(5) --Posix信号量与互斥量解决生产者消费者问题

简介: Posix信号量Posix 信号量有名信号量无名信号量sem_opensem_initsem_closesem_destroysem_unlink sem...

Posix信号量

Posix 信号量

有名信号量

无名信号量

sem_open

sem_init

sem_close

sem_destroy

sem_unlink

 

sem_wait

sem_post

 

有名信号量

#include <fcntl.h>           /* For O_* constants */
#include <sys/stat.h>        /* For mode constants */
#include <semaphore.h>
sem_t *sem_open(const char *name, int oflag);
sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned int value);
int sem_close(sem_t *sem);
int sem_unlink(const char *name);

  与Posix类IPC用法类似: 名字以/somename形式标识,且只能有一个/ ,并且总长不能超过NAME_MAX-4 (i.e., 251)。

  Posix有名信号量需要用sem_open 函数创建或打开,PV操作分别是sem_wait 和 sem_post,可以使用sem_close 关闭,删除用sem_unlink。

  有名信号量用于不需要共享内存的进程间同步(可以通过名字访问), 类似System V 信号量。

 

匿名信号量

#include <semaphore.h>
int sem_init(sem_t *sem, int pshared, unsigned int value);
int sem_destroy(sem_t *sem);

  匿名信号量只存在于内存中, 并要求使用信号量的进程必须可以访问内存; 这意味着他们只能应用在同一进程中的线程, 或者不同进程中已经映射相同内存内容到它们的地址空间中的线程.

  匿名信号量必须用sem_init 初始化,sem_init 函数的第二个参数pshared决定了线程共享(pshared=0)还是进程共享(pshared!=0),也可以用sem_post 和sem_wait 进行操作,在共享内存释放前,匿名信号量要先用sem_destroy 销毁。

 

Posix信号量PV操作

int sem_wait(sem_t *sem);	//P操作
int sem_post(sem_t *sem);	//V操作

  wait操作实现对信号量的减1, 如果信号量计数原先为0则会发生阻塞;

  post操作将信号量加1, 在调用sem_post时, 如果在调用sem_wait中发生了进程阻塞, 那么进程会被唤醒并且sem_post增1的信号量计数会再次被sem_wait减1;

 

Posix互斥锁

#include <pthread.h>
int pthread_mutex_init(pthread_mutex_t *mutex, 
                       const pthread_mutexattr_t *mutexattr);		//互斥锁初始化, 注意:函数成功执行后,互斥锁被初始化为未锁住状态。
int pthread_mutex_lock(pthread_mutex_t *mutex);	//互斥锁上锁
int pthread_mutex_trylock(pthread_mutex_t *mutex);	//互斥锁判断上锁
int pthread_mutex_unlock(pthread_mutex_t *mutex);	//互斥锁解锁
int pthread_mutex_destroy(pthread_mutex_t *mutex);	//消除互斥锁

  互斥锁是用一种简单的加锁方法来控制对共享资源的原子操作。这个互斥锁只有两种状态,也就是上锁/解锁,可以把互斥锁看作某种意义上的全局变量。在同一时刻只能有一个线程掌握某个互斥锁,拥有上锁状态的线程能够对共享资源进行操作。若其他线程希望上锁一个已经被上锁的互斥锁,则该线程就会阻塞,直到上锁的线程释放掉互斥锁为止。可以说,这把互斥锁保证让每个线程对共享资源按顺序进行原子操作。

  其中,互斥锁可以分为快速互斥锁(默认互斥锁)、递归互斥锁和检错互斥锁。这三种锁的区别主要在于其他未占有互斥锁的线程在希望得到互斥锁时是否需要阻塞等待。快速锁是指调用线程会阻塞直至拥有互斥锁的线程解锁为止。递归互斥锁能够成功地返回,并且增加调用线程在互斥上加锁的次数,而检错互斥锁则为快速互斥锁的非阻塞版本,它会立即返回并返回一个错误信息。 

 

生产者消费者问题

运用C++, 将缓冲区封装成class Storage

//Storage类设计
class Storage
{
public:
    Storage(unsigned int _bufferSize);
    ~Storage();

    void consume(int id);   //消费
    void produce(int id);   //生产

private:
    // 打印缓冲区状态
    void display(bool isConsumer = false);

private:
    unsigned int buffSize;
    int *m_storage; //缓冲区

    unsigned short int in;  //生产位置
    unsigned short int out; //消费位置
    unsigned int product_number;    //产品编号

    sem_t sem_full; //满信号量
    sem_t sem_empty;//空信号量
    pthread_mutex_t mutex;  //互斥量: 保护缓冲区互斥访问
};
//Storage类实现
Storage::Storage(unsigned int _bufferSize)
    :buffSize(_bufferSize), in(0), out(0), product_number(0)
{
    m_storage = new int[buffSize];
    for (unsigned int i = 0; i < buffSize; ++ i)
        m_storage[i] = -1;

    sem_init(&sem_full, 0, 0);
    //将empty信号量初始化为缓冲区大小
    sem_init(&sem_empty, 0, buffSize);
    pthread_mutex_init(&mutex, NULL);
}

Storage::~Storage()
{
    delete []m_storage;

    pthread_mutex_destroy(&mutex);
    sem_destroy(&sem_empty);
    sem_destroy(&sem_full);
}
void Storage::produce(int id)
{
    printf("producer %d is waiting storage not full\n", id);
    //获取empty信号量
    sem_wait(&sem_empty);
    //获取互斥量
    pthread_mutex_lock(&mutex);

    //生产
    cout << "++ producer " << id << " begin produce "
         << ++product_number << " ..." << endl;
    m_storage[in] = product_number;
    //打印此时缓冲区状态
    display(false);
    in = (in+1)%buffSize;
    cout << "   producer " << id << " end produce ...\n" << endl;

    //释放互斥量
    pthread_mutex_unlock(&mutex);
    //释放full信号量
    sem_post(&sem_full);
    sleep(1);
}
void Storage::consume(int id)
{
    printf("consumer %d is waiting storage not empty\n", id);
    //获取full信号量
    sem_wait(&sem_full);
    //获取互斥量
    pthread_mutex_lock(&mutex);

    //消费
    int consume_id = m_storage[out];
    cout << "-- consumer " << id << " begin consume "
         << consume_id << " ..." << endl;
    m_storage[out] = -1;
    //打印此时缓冲区状态
    display(true);
    out = (out+1)%buffSize;
    cout << "   consumer " << id << " end consume ...\n" << endl;

    //解锁互斥量
    pthread_mutex_unlock(&mutex);
    //释放empty信号量
    sem_post(&sem_empty);
    sleep(1);
}
void Storage::display(bool isConsme)
{
    cout << "states: { ";
    for (unsigned int i = 0; i < buffSize; ++i)
    {
        if (isConsme && out == i)
            cout << '#';
        else if (!isConsme && in == i)
            cout << '*';

        if (m_storage[i] == -1)
            cout << "null ";
        else
            printf("%-4d ", m_storage[i]);
    }
    cout << "}" << endl;
}
//生产者, 消费者代码实现
//缓冲区
Storage *storage;
//生产者-线程
void *producer(void *args)
{
    int id = *(int *)args;
    delete (int *)args;

    while (1)
        storage->produce(id);   //生产
    return NULL;
}
//消费者-线程
void *consumer(void *args)
{
    int id = *(int *)args;
    delete (int *)args;

    while (1)
        storage->consume(id);   //消费
    return NULL;
}
//主控线程
int main()
{
    int nProducer = 1;
    int nConsumer = 2;
    cout << "please input the number of producer: ";
    cin >> nProducer;
    cout << "please input the number of consumer: ";
    cin >> nConsumer;
    cout << "please input the size of buffer: ";

    int size;
    cin >> size;
    storage = new Storage(size);

    pthread_t *thread = new pthread_t[nProducer+nConsumer];
    //创建消费者进程
    for (int i = 0; i < nConsumer; ++i)
        pthread_create(&thread[i], NULL, consumer, new int(i));
    //创建生产者进程
    for (int i = 0; i < nProducer; ++i)
        pthread_create(&thread[nConsumer+i], NULL, producer, new int(i));

    //等待线程结束
    for (int i = 0; i < nProducer+nConsumer; ++i)
        pthread_join(thread[i], NULL);

    delete storage;
    delete []thread;
}

完整源代码:http://download.csdn.net/download/hanqing280441589/8444613


目录
相关文章
|
17天前
|
Java 调度
Java并发编程:深入理解线程池的原理与实践
【4月更文挑战第6天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将从线程池的基本原理入手,逐步解析其工作过程,以及如何在实际开发中合理使用线程池以提高程序性能。同时,我们还将关注线程池的一些高级特性,如自定义线程工厂、拒绝策略等,以帮助读者更好地掌握线程池的使用技巧。
|
21天前
|
Linux C++
LInux下Posix的传统线程示例
LInux下Posix的传统线程示例
18 1
|
27天前
|
存储 算法 Linux
【Linux 应用开发 共享内存】深入理解和实践 ftruncate:共享内存的有效管理
【Linux 应用开发 共享内存】深入理解和实践 ftruncate:共享内存的有效管理
60 5
|
28天前
|
算法 Unix Linux
Linux与Qt线程优先级的对应关系:一次全面解析
Linux与Qt线程优先级的对应关系:一次全面解析
21 0
|
18天前
|
Java 程序员 调度
Java中的多线程编程:基础知识与实践
【4月更文挑战第5天】 在现代软件开发中,多线程编程是一个不可或缺的技术要素。它允许程序员编写能够并行处理多个任务的程序,从而充分利用多核处理器的计算能力,提高应用程序的性能。Java作为一种广泛使用的编程语言,提供了丰富的多线程编程支持。本文将介绍Java多线程编程的基础知识,并通过实例演示如何创建和管理线程,以及如何解决多线程环境中的常见问题。
|
29天前
|
消息中间件 Linux 调度
【Linux 进程/线程状态 】深入理解Linux C++中的进程/线程状态:阻塞,休眠,僵死
【Linux 进程/线程状态 】深入理解Linux C++中的进程/线程状态:阻塞,休眠,僵死
67 0
|
5天前
|
安全 Java 程序员
Java中的多线程并发编程实践
【4月更文挑战第18天】在现代软件开发中,为了提高程序性能和响应速度,经常需要利用多线程技术来实现并发执行。本文将深入探讨Java语言中的多线程机制,包括线程的创建、启动、同步以及线程池的使用等关键技术点。我们将通过具体代码实例,分析多线程编程的优势与挑战,并提出一系列优化策略来确保多线程环境下的程序稳定性和性能。
|
10天前
|
Linux 数据安全/隐私保护
Linux基础与服务器架构综合小实践
【4月更文挑战第9天】Linux基础与服务器架构综合小实践
1227 8
|
12天前
|
Java 调度
Java中的多线程编程:从理论到实践
【4月更文挑战第11天】在现代软件开发中,多线程编程是一个重要的概念。它允许多个线程同时运行,从而提高了程序的执行效率和响应速度。本文将深入探讨Java中的多线程编程,包括基本概念、实现方法以及实际应用案例。我们将从理论出发,然后通过实例来加深理解,最后讨论多线程编程的优势和挑战。
|
16天前
|
Java API UED
Java中的多线程并发编程实践
【4月更文挑战第7天】在现代软件开发中,多线程技术是提高程序性能和响应速度的重要手段。Java语言提供了丰富的多线程支持,包括线程的创建、管理和同步机制。本文将深入探讨Java多线程的基本概念、实现方式以及常见的并发问题,并通过实例代码演示如何高效地利用多线程技术。
11 1