【Aladdin Unity3D Shader编程】之四 贴图纹理

简介: 关于纹理贴图介绍纹理坐标也叫UV坐标,UV坐标都是0~1,并不是我们所理解的像素坐标,相当于是一个百分比。编写shader映射纹理将纹理的颜色取代漫反射的颜色Shader "AladdinShader/11 Single Texture Shader"...

关于纹理贴图介绍

纹理坐标也叫UV坐标,UV坐标都是0~1,并不是我们所理解的像素坐标,相当于是一个百分比。

编写shader映射纹理

将纹理的颜色取代漫反射的颜色

Shader "AladdinShader/11 Single Texture Shader"
{
    Properties
    {
        // _Diffuse("Diffuse Color", Color)=(1,1,1,1) //漫反射的颜色
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _Specular("Specular Color", Color)=(1,1,1,1)
        _Gloss("Gloss",Range(10,200))=20
    }
    SubShader {
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }
            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            half _Gloss;
            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                float3 normal:NORMAL; //模型空间下的法线

                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                float4 worldVertex:TEXCOORD1;

                //将取到的纹理坐标传递到片元函数
                float4 uv:TEXCOORD2;
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv = v.texcoord;
                return f;
            } 

            //片元函数返回颜色
            fixed4 frag(v2f f):SV_Target{
                //漫反射
                //漫反射颜色 先不管透明度
                //_LightColor0 平行光的颜色 cos夹角 光的方向和视野的夹角
                fixed3 normalDir = normalize(f.worldNormal);
                //光的方向
                fixed3 lightDir = normalize(WorldSpaceLightDir(f.worldVertex));

                //返回贴图上某像素颜色的值
                fixed3 texColor = tex2D(_MainTex, f.uv.xy) * _Color.rgb;

                //漫反射的颜色
                // fixed3 diffuse = _LightColor0.rgb *_Diffuse.rgb * max(dot(normalDir, lightDir),0);
                fixed3 diffuse = _LightColor0.rgb * texColor * max(dot(normalDir, lightDir), 0);

                //相机方向
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(f.worldVertex));

                //光和相机方向的平分线
                fixed3 halfDir = normalize(lightDir + viewDir);
                //高光反射
                fixed3  specular = _LightColor0.rgb * _Specular.rgb * pow(max(dot(normalDir,halfDir),0),_Gloss);
                //环境光
                // fixed3 tempColor = diffuse + specular + UNITY_LIGHTMODEL_AMBIENT.rgb; 

                //使用了纹理之后 一般环境光也跟纹理做一个融合
                fixed3 tempColor = diffuse + specular + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,1);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}

我们找一个纹理贴图

然后将贴图赋值给_MainTex属性,调整一下高光颜色和整体贴图颜色属性并且查看效果
第一组效果:


第二组效果:

给纹理添加偏移和缩放

将一个贴图拖到模型上会自动创建跟名字一样的材质,Shader中创建一个2D属性会发现在Inspector面板上会有一个Tiling和Offset两个属性,Tiling是缩放属性,Offset是偏移属性。
将上面的例子修改一下Shader,支持纹理的旋转和缩放:

Shader "AladdinShader/11 Single Texture Shader"
{
    Properties
    {
        // _Diffuse("Diffuse Color", Color)=(1,1,1,1) //漫反射的颜色
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _Specular("Specular Color", Color)=(1,1,1,1)
        _Gloss("Gloss",Range(10,200))=20
    }
    SubShader {
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }
            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            //Tiling 和Offset  ST 就是偏移和缩放的值
            float4 _MainTex_ST;
            half _Gloss;
            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                float3 normal:NORMAL; //模型空间下的法线

                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                float4 worldVertex:TEXCOORD1;

                //将取到的纹理坐标传递到片元函数
                float2 uv:TEXCOORD2;
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; //乘以Tiling缩放 + Offset旋转
                return f;
            } 

            //片元函数返回颜色
            fixed4 frag(v2f f):SV_Target{
                //漫反射
                //漫反射颜色 先不管透明度
                //_LightColor0 平行光的颜色 cos夹角 光的方向和视野的夹角
                fixed3 normalDir = normalize(f.worldNormal);
                //光的方向
                fixed3 lightDir = normalize(WorldSpaceLightDir(f.worldVertex));

                //返回贴图上某像素颜色的值
                fixed3 texColor = tex2D(_MainTex, f.uv.xy) * _Color.rgb;

                //漫反射的颜色
                // fixed3 diffuse = _LightColor0.rgb *_Diffuse.rgb * max(dot(normalDir, lightDir),0);
                fixed3 diffuse = _LightColor0.rgb * texColor * max(dot(normalDir, lightDir), 0);

                //相机方向
                fixed3 viewDir = normalize(UnityWorldSpaceViewDir(f.worldVertex));

                //光和相机方向的平分线
                fixed3 halfDir = normalize(lightDir + viewDir);
                //高光反射
                fixed3  specular = _LightColor0.rgb * _Specular.rgb * pow(max(dot(normalDir,halfDir),0),_Gloss);
                //环境光
                // fixed3 tempColor = diffuse + specular + UNITY_LIGHTMODEL_AMBIENT.rgb; 

                //使用了纹理之后 一般环境光也跟纹理做一个融合
                fixed3 tempColor = diffuse + specular + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,1);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}

说明:
1.pass中定义的新的变量 float4 _MainTex_ST; 是用来获取贴图的Tiling和Offset的值,因为是一个xyzw的四个值,所以我们用float4来定义,变量名_MainTex_ST是一个固定格式的变量,_MainTex是跟纹理贴图变量保持一致,_ST是缩放Scale和移动Translate的首字母。
2. f.uv = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; 这句是核心,意思是将纹理*Tiling的缩放系数加上偏移量就得到想要的效果。
效果图:
原图
X缩放
Y缩放
偏移

纹理的属性

Texture Type

  • Default 就是默认的贴图/Texture
  • Normal map 法线贴图
  • Editor GUI and Legacy GUI 编辑器贴图
  • Sprite(2D and UI) 就是2D图
  • Cursor 就是鼠标贴图
  • Cubemap就是用来做环境盒子
  • Cookie 就是影子贴图
  • Lightmap 就是光照贴图,场景烘焙之后的光照贴图,就不用实时计算光照

Advanced

  • Read/Write Enabled 是否可读写
  • Generate Mip Maps适配贴图 会计算生成若干个贴图 更大效果更好

Wrap Mode

  • Repeat 当超过0-1的范围会周期循环读取贴图
  • Clap 当超过0-1的范围会使用边界像素

Filter Mode

滤波模式,当纹理拉伸之后图片显示的模式
* Point(no filter) 像素风格
* Bilinear 二线性
* Triliner 三线行
从上到下一次越来越耗费性能,但效果会越来越好,一般选用中间的格式。Triliner会经过插值计算,效果更好,但计算量也最大,如果选择Point格式,比较适合像素风格,但远处看的话效果还行,近看就会看出像素效果。

关于凹凸映射和法线映射

使用情况:我们在减少模型面的情况下使用凹凸映射会让模型看起来更加精细。会修改模型的法线,让模型看起来凹凸不平。
举例:比如我们生活中常见的石头模型,如果模型本身不是精细,因为精细的模型会显得顶点和面数会比较多,但这时候可以采用法线贴图来实现表面坑洼的效果。
石头原效果图:

使用我们自定义的Shader看到模型本身的棱角效果图会感觉石头模型比较光滑

图二就感觉效果跟图一相差很大,但模型是用的同一个模型,这就体现了法线贴图的重要性。

法线贴图

那么何为发现贴图,看下图:

法线贴图就是将贴图的法线用颜色值表现出来,但法线是-1~1,颜色是0~1是怎么对应上的呢?这里就需要做一个处理:
pixel(像素值) = (normal(法线值) + 1) / 2
经过这样的变化就能存到颜色里面,所以我们拿到一个发现贴图我们需要反向运算才能获得正确的法线值。
normal = pixel * 2 - 1

切线空间

切换空间最重要的用途之一,即法线映射(Normal Mapping)。在这个空间里,我们不需要考虑该模型在场景中可能出现的位置、朝向等众多因素,而专注于模型本身。详细的参见文章:https://www.cnblogs.com/naturelight/articles/5486469.html
我们称tangant轴(T)、bitangent轴(B)及法线轴(N)所组成的坐标系,即切线空间(TBN)。

在立方体中,每个面都有对应的切线空间,每个面由两个三角形组成,该两个三角形中的纹理坐标就基于相应的切线空间。

编写法线贴图Shader

Shader "AladdinShader/13 Rock Normal Map Shader"
{
    Properties
    {
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _NormalMap("NormalMap", 2D) = "bump"{} //bump这个位置没有使用法线贴图的时候就使用模型自带的法线  使用的是切线空间
    }
    SubShader {
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }
            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            float4 _MainTex_ST;
            sampler2D _NormalMap;
            float4 _NormalMap_ST; //法线贴图的ST

            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                //切线空间的确定是通过(存储到模型里面的)法线和(存储到模型里面的)切线确定的
                float3 normal:NORMAL; 
                float4 tangent:TANGENT; //TANGENT.w是用来确定切线空间中坐标轴的方向的
                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                //fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                //切线空间下 平行光的方向
                float3 lightDir:TEXCOORD0; 
                float4 worldVertex:TEXCOORD1;
                //将取到的纹理坐标传递到片元函数
                float4 uv:TEXCOORD2;  //xy 用来存储MainTex的纹理坐标 zw用来存存储NormalMap的纹理坐标
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                //f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv.xy = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; //乘以Tiling缩放 + Offset旋转
                f.uv.zw = v.texcoord.xy * _NormalMap_ST.xy + _NormalMap_ST.zw;

                TANGENT_SPACE_ROTATION;//调用这个之后会得到一个矩阵 rotation 这个矩阵用来把模型空间下的方向转换成切线空间下  调用这个还必须要求a2v 的变量是V 并且它里面要有切线空间下的法线normal和切线tangent这两个变量 在这个方法里面会使用
                //得到模型空间下的光的方向
                //ObjSpaceLightDir(v.vertex) //得到模型空间下的平行光方向
                f.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex));
                return f;
            } 

            //把所有跟法线方向有关的运算都放在切线空间下
            //从法线贴图里取得的法线方向都是在切线空间下的
            fixed4 frag(v2f f):SV_Target{
                //取得贴图里面获得的法线
                //获取颜色值
                fixed4 normalColor = tex2D(_NormalMap,f.uv.zw);

                //切线空间下的法线
                //fixed3 tangentNormal = normalize(normalColor.xyz * 2 - 1);  //unity里面直接将法线贴图设置成NormalMap就会做一些处理,然后用系统方法提取法线 而不用我们自己计算
                //提取法线
                fixed3 tangentNormal = UnpackNormal(normalColor);
                tangentNormal = normalize(tangentNormal);

                //光的方向
                fixed3 lightDir = normalize(f.lightDir);

                //返回贴图上某像素颜色的值
                fixed3 texColor = tex2D(_MainTex, f.uv.xy) * _Color.rgb;

                fixed3 diffuse = _LightColor0.rgb * texColor * max(dot(tangentNormal, lightDir), 0);

                fixed3 tempColor = diffuse + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,1);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}

效果图:

最左边是插件中的模型效果,最右边是自己实现的模型效果

法线贴图添加凹凸参数

添加凹凸参数属性控制凹凸力度

Shader "AladdinShader/13 Rock Normal Map Shader"
{
    Properties
    {
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _NormalMap("NormalMap", 2D) = "bump"{} //bump这个位置没有使用法线贴图的时候就使用模型自带的法线  使用的是切线空间
        _BumpScale("Bump Scale", float) = 1
    }
    SubShader {
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }
            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            float4 _MainTex_ST;
            sampler2D _NormalMap;
            float4 _NormalMap_ST; //法线贴图的ST
            float _BumpScale;

            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                //切线空间的确定是通过(存储到模型里面的)法线和(存储到模型里面的)切线确定的
                float3 normal:NORMAL; 
                float4 tangent:TANGENT; //TANGENT.w是用来确定切线空间中坐标轴的方向的
                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                //fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                //切线空间下 平行光的方向
                float3 lightDir:TEXCOORD0; 
                float4 worldVertex:TEXCOORD1;
                //将取到的纹理坐标传递到片元函数
                float4 uv:TEXCOORD2;  //xy 用来存储MainTex的纹理坐标 zw用来存存储NormalMap的纹理坐标
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                //f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv.xy = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; //乘以Tiling缩放 + Offset旋转
                f.uv.zw = v.texcoord.xy * _NormalMap_ST.xy + _NormalMap_ST.zw;

                TANGENT_SPACE_ROTATION;//调用这个之后会得到一个矩阵 rotation 这个矩阵用来把模型空间下的方向转换成切线空间下  调用这个还必须要求a2v 的变量是V 并且它里面要有切线空间下的法线normal和切线tangent这两个变量 在这个方法里面会使用
                //得到模型空间下的光的方向
                //ObjSpaceLightDir(v.vertex) //得到模型空间下的平行光方向
                f.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex));
                return f;
            } 

            //把所有跟法线方向有关的运算都放在切线空间下
            //从法线贴图里取得的法线方向都是在切线空间下的
            fixed4 frag(v2f f):SV_Target{
                //取得贴图里面获得的法线
                //获取颜色值
                fixed4 normalColor = tex2D(_NormalMap,f.uv.zw);

                //切线空间下的法线
                //fixed3 tangentNormal = normalize(normalColor.xyz * 2 - 1);  //unity里面直接将法线贴图设置成NormalMap就会做一些处理,然后用系统方法提取法线 而不用我们自己计算
                //提取法线
                fixed3 tangentNormal = UnpackNormal(normalColor);
                tangentNormal = normalize(tangentNormal);
                tangentNormal.xy = tangentNormal.xy * _BumpScale;

                //光的方向
                fixed3 lightDir = normalize(f.lightDir);

                //返回贴图上某像素颜色的值
                fixed3 texColor = tex2D(_MainTex, f.uv.xy) * _Color.rgb;

                fixed3 diffuse = _LightColor0.rgb * texColor * max(dot(tangentNormal, lightDir), 0);

                fixed3 tempColor = diffuse + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,1);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}

调整凹凸属性:


编写透明Shader

Shader "AladdinShader/14 Rock Alpha Shader"
{
    Properties
    {
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _NormalMap("NormalMap", 2D) = "bump"{} //bump这个位置没有使用法线贴图的时候就使用模型自带的法线  使用的是切线空间
        _BumpScale("Bump Scale", float) = 1
        _Alpha("Alpha", Range(0,1)) = 1
    }
    SubShader {
        Tags{"Queue" = "Transparent" "IgnoreProjector" = "True" "RenderType" = "Transparent"}
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }

            ZWrite Off
            Blend SrcAlpha OneMinusSrcAlpha

            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            float4 _MainTex_ST;
            sampler2D _NormalMap;
            float4 _NormalMap_ST; //法线贴图的ST
            float _BumpScale;
            float _Alpha;

            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                //切线空间的确定是通过(存储到模型里面的)法线和(存储到模型里面的)切线确定的
                float3 normal:NORMAL; 
                float4 tangent:TANGENT; //TANGENT.w是用来确定切线空间中坐标轴的方向的
                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                //fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                //切线空间下 平行光的方向
                float3 lightDir:TEXCOORD0; 
                float4 worldVertex:TEXCOORD1;
                //将取到的纹理坐标传递到片元函数
                float4 uv:TEXCOORD2;  //xy 用来存储MainTex的纹理坐标 zw用来存存储NormalMap的纹理坐标
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                //f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv.xy = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; //乘以Tiling缩放 + Offset旋转
                f.uv.zw = v.texcoord.xy * _NormalMap_ST.xy + _NormalMap_ST.zw;

                TANGENT_SPACE_ROTATION;//调用这个之后会得到一个矩阵 rotation 这个矩阵用来把模型空间下的方向转换成切线空间下  调用这个还必须要求a2v 的变量是V 并且它里面要有切线空间下的法线normal和切线tangent这两个变量 在这个方法里面会使用
                //得到模型空间下的光的方向
                //ObjSpaceLightDir(v.vertex) //得到模型空间下的平行光方向
                f.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex));
                return f;
            } 

            //把所有跟法线方向有关的运算都放在切线空间下
            //从法线贴图里取得的法线方向都是在切线空间下的
            fixed4 frag(v2f f):SV_Target{
                //取得贴图里面获得的法线
                //获取颜色值
                fixed4 normalColor = tex2D(_NormalMap,f.uv.zw);

                //切线空间下的法线
                //fixed3 tangentNormal = normalize(normalColor.xyz * 2 - 1);  //unity里面直接将法线贴图设置成NormalMap就会做一些处理,然后用系统方法提取法线 而不用我们自己计算
                //提取法线
                fixed3 tangentNormal = UnpackNormal(normalColor);
                tangentNormal = normalize(tangentNormal);
                tangentNormal.xy = tangentNormal.xy * _BumpScale;

                //光的方向
                fixed3 lightDir = normalize(f.lightDir);

                //返回贴图上某像素颜色的值
                fixed4 texColor = tex2D(_MainTex, f.uv.xy) * _Color;

                fixed3 diffuse = _LightColor0.rgb * texColor.rgb * max(dot(tangentNormal, lightDir), 0);

                fixed3 tempColor = diffuse + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,texColor.a);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}

或者属性面板控制:

Shader "AladdinShader/14 Rock Alpha Shader"
{
    Properties
    {
        _MainTex("Main Tex", 2D) = "white"{} //纹理贴图 默认白色
        _Color("Color", Color) = (1,1,1,1) //整体一个色调
        _NormalMap("NormalMap", 2D) = "bump"{} //bump这个位置没有使用法线贴图的时候就使用模型自带的法线  使用的是切线空间
        _BumpScale("Bump Scale", float) = 1
        _Alpha("Alpha", Range(0,1)) = 1
    }
    SubShader {
        Tags{"Queue" = "Transparent" "IgnoreProjector" = "True" "RenderType" = "Transparent"}
        Pass{
            //只有正确定义Tags 才能获取跟光相关的属性
            Tags { "LightMode"="ForwardBase" }

            ZWrite Off
            Blend SrcAlpha OneMinusSrcAlpha

            CGPROGRAM
#include "Lighting.cginc" 
#pragma vertex vert 
#pragma fragment frag 

            // fixed4 _Diffuse;
            sampler2D _MainTex;
            fixed4 _Color;
            fixed4 _Specular;
            float4 _MainTex_ST;
            sampler2D _NormalMap;
            float4 _NormalMap_ST; //法线贴图的ST
            float _BumpScale;
            float _Alpha;

            //顶点函数参数
            struct a2v{
                float4 vertex:POSITION; //顶点位置
                //切线空间的确定是通过(存储到模型里面的)法线和(存储到模型里面的)切线确定的
                float3 normal:NORMAL; 
                float4 tangent:TANGENT; //TANGENT.w是用来确定切线空间中坐标轴的方向的
                //纹理坐标只能在定点函数取到
                float4 texcoord:TEXCOORD0; 
            };

            struct v2f{
                float4 svPos:SV_POSITION;
                //fixed3 worldNormal:TEXCOORD0;//世界空间下的法线
                //切线空间下 平行光的方向
                float3 lightDir:TEXCOORD0; 
                float4 worldVertex:TEXCOORD1;
                //将取到的纹理坐标传递到片元函数
                float4 uv:TEXCOORD2;  //xy 用来存储MainTex的纹理坐标 zw用来存存储NormalMap的纹理坐标
            };

            v2f vert(a2v v)
            {
                v2f f;
                f.svPos = mul(UNITY_MATRIX_MVP,v.vertex); //模型空间位置到剪裁空间的顶点位置的转换
                //f.worldNormal = UnityObjectToWorldNormal(v.normal); //模型空间的法线转成时间空间下的法线
                f.worldVertex = mul(v.vertex,unity_WorldToObject);
                f.uv.xy = v.texcoord.xy * _MainTex_ST.xy +_MainTex_ST.zw; //乘以Tiling缩放 + Offset旋转
                f.uv.zw = v.texcoord.xy * _NormalMap_ST.xy + _NormalMap_ST.zw;

                TANGENT_SPACE_ROTATION;//调用这个之后会得到一个矩阵 rotation 这个矩阵用来把模型空间下的方向转换成切线空间下  调用这个还必须要求a2v 的变量是V 并且它里面要有切线空间下的法线normal和切线tangent这两个变量 在这个方法里面会使用
                //得到模型空间下的光的方向
                //ObjSpaceLightDir(v.vertex) //得到模型空间下的平行光方向
                f.lightDir = mul(rotation, ObjSpaceLightDir(v.vertex));
                return f;
            } 

            //把所有跟法线方向有关的运算都放在切线空间下
            //从法线贴图里取得的法线方向都是在切线空间下的
            fixed4 frag(v2f f):SV_Target{
                //取得贴图里面获得的法线
                //获取颜色值
                fixed4 normalColor = tex2D(_NormalMap,f.uv.zw);

                //切线空间下的法线
                //fixed3 tangentNormal = normalize(normalColor.xyz * 2 - 1);  //unity里面直接将法线贴图设置成NormalMap就会做一些处理,然后用系统方法提取法线 而不用我们自己计算
                //提取法线
                fixed3 tangentNormal = UnpackNormal(normalColor);
                tangentNormal = normalize(tangentNormal);
                tangentNormal.xy = tangentNormal.xy * _BumpScale;

                //光的方向
                fixed3 lightDir = normalize(f.lightDir);

                //返回贴图上某像素颜色的值
                fixed3 texColor = tex2D(_MainTex, f.uv.xy) * _Color.rgb;

                fixed3 diffuse = _LightColor0.rgb * texColor * max(dot(tangentNormal, lightDir), 0);

                fixed3 tempColor = diffuse + UNITY_LIGHTMODEL_AMBIENT.rbg * texColor;
                return fixed4(tempColor,_Alpha);
            }
            ENDCG
        }
    }
    FallBack  "Specular"
}


跟透明相关的代码块
Tags{“Queue” = “Transparent” “IgnoreProjector” = “True” “RenderType” = “Transparent”}
ZWrite Off
Blend SrcAlpha OneMinusSrcAlpha

Shader学习交流群:
316977780

相关文章
|
图形学
【Unity3D Shader】学习笔记-纹理采样②
前言 上一篇对同一纹理进行多次采样混合,本篇则是通过不同的纹理采样进行混合产生一些效果。 一、简单贴花 贴花简单来说就是在原贴图上面贴上细节贴图,就像墙面上的喷绘一样。下面这个只是最简单的例子,也就是只能在一张图(一个模型)上面贴其他细节。
224 0
【Unity3D Shader】学习笔记-纹理采样②
|
图形学
【Unity3D Shader】学习笔记-纹理采样①
前言 纹理采样属于在片段着色器中进行,通过提供的贴图和uv坐标使用tex2D进行采样。本篇主要介绍对同一纹理多次采样然后进行混合来获得不同的效果。 [声明:本笔记系列文章的图片资源都源自百度图片搜索,如有问题联系我] 一、简单重影 对同一纹理进行两次采样,采样时的UV两次坐标不一样,然后将采样的结果进行取平均得到最终的结果。
478 0
【Unity3D Shader】学习笔记-纹理采样①
|
图形学 异构计算
Unity 之 纹理类型导入设置和压缩格式介绍
你知道纹理导入正确设置和各平台压缩格式吗?本文教你如何将纹理资源导入到Unity并为其设置为对应平台需要使用的压缩格式,一起来看看吧~
807 0
Unity 之 纹理类型导入设置和压缩格式介绍
|
图形学 机器人
带你读《Unity游戏开发(原书第3版)》之三:模型、材质和纹理
本书主要介绍Unity2018的使用和游戏开发流程中涉及的各种知识。每一章的结构特别清晰,先综述该章要介绍的内容,然后一步步深入讲解,中间穿插着很多动手做的实践操作,可以让读者加深对某个概念、方法的理解,每章的最后还有一个小测验和一个稍微大一点的实践练习,用于巩固该章的学习内容。
|
图形学
【Unity Shader】(八) ------ 高级纹理之立方体纹理及光线反射、折射的实现
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/weixin_37027464/article/details/83511904 笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题。
2150 0
|
存储 图形学
【Unity Shader】(四) ------ 纹理之法线纹理、单张纹理及遮罩纹理的实现
笔者使用的是 Unity 2018.2.0f2 + VS2017,建议读者使用与 Unity 2018 相近的版本,避免一些因为版本不一致而出现的问题。 【Unity Shader】(三) ------ 光照模型原理及漫反射和高光反射的实现 【Unity Shader】(五) ------ 透明效果之半透明效果的实现及原理   在游戏中,我们除了能看到游戏物体的形体轮廓,还能看到物体的一些具体外观,包括颜色,凹凸等。
1816 0
|
编解码 测试技术 Android开发