Java 反射机制深入研究

简介:

Java 反射是Java语言的一个很重要的特征,它使得Java具体了“动态性”。

 

在Java运行时环境中,对于任意一个类,能否知道这个类有哪些属性和方法?对于任意一个对象,能否调用它的任意一个方法?答案是肯定的。这种动态获取类的信息以及动态调用对象的方法的功能来自于Java 语言的反射(Reflection)机制。

 

Java 反射机制主要提供了以下功能:

在运行时判断任意一个对象所属的类。

在运行时构造任意一个类的对象。

在运行时判断任意一个类所具有的成员变量和方法。

在运行时调用任意一个对象的方法。

 

Reflection 是Java被视为动态(或准动态)语言的一个关键性质。这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其modifiers(诸如public, static 等等)、superclass(例如Object)、实现之interfaces(例如Serializable),也包括fields和methods的所有信息,并可于运行时改变fields内容或调用methods。

 

一般而言,开发者社群说到动态语言,大致认同的一个定义是:“程序运行时,允许改变程序结构或变量类型,这种语言称为动态语言”。从这个观点看,Perl,Python,Ruby是动态语言,C++,Java,C#不是动态语言。

 

尽管在这样的定义与分类下Java不是动态语言,它却有着一个非常突出的动态相关机制:Reflection。这个字的意思是“反射、映象、倒影”,用在Java身上指的是我们可以于运行时加载、探知、使用编译期间完全未知的classes。换句话说,Java程序可以加载一个运行时才得知名称的class,获悉其完整构造(但不包括methods定义),并生成其对象实体、或对其fields设值、或唤起其methods。这种“看透class”的能力(the ability of the program to examine itself)被称为introspection(内省、内观、反省)。Reflection和introspection是常被并提的两个术语。

 

在JDK中,主要由以下类来实现Java反射机制,这些类都位于java.lang.reflect包中:

Class类:代表一个类。

Field 类:代表类的成员变量(成员变量也称为类的属性)。

Method类:代表类的方法。

Constructor 类:代表类的构造方法。

Array类:提供了动态创建数组,以及访问数组的元素的静态方法。

 

下面给出几个例子看看Reflection API的实际运用:

 

一、通过Class类获取成员变量、成员方法、接口、超类、构造方法等

 

在java.lang.Object 类中定义了getClass()方法,因此对于任意一个Java对象,都可以通过此方法获得对象的类型。Class类是Reflection API 中的核心类,它有以下方法

getName():获得类的完整名字。

getFields():获得类的public类型的属性。

getDeclaredFields():获得类的所有属性。

getMethods():获得类的public类型的方法。

getDeclaredMethods():获得类的所有方法。

getMethod(String name, Class[] parameterTypes):获得类的特定方法,name参数指定方法的名字,parameterTypes 参数指定方法的参数类型。

getConstructors():获得类的public类型的构造方法。

getConstructor(Class[] parameterTypes):获得类的特定构造方法,parameterTypes 参数指定构造方法的参数类型。

newInstance():通过类的不带参数的构造方法创建这个类的一个对象。

 

下面给出一个综合运用的例子:

 

public class RefConstructor {

 

    public static void main(String args[]) throws Exception {

        RefConstructor ref = new RefConstructor();

        ref.getConstructor();

 

    }

 

    public void getConstructor() throws Exception {

        Class c = null;

        c = Class.forName("java.lang.Long");

        Class cs[] = {java.lang.String.class};

 

        System.out.println("\n-------------------------------\n");

 

        Constructor cst1 = c.getConstructor(cs);

        System.out.println("1、通过参数获取指定Class对象的构造方法:");

        System.out.println(cst1.toString());

 

        Constructor cst2 = c.getDeclaredConstructor(cs);

        System.out.println("2、通过参数获取指定Class对象所表示的类或接口的构造方法:");

        System.out.println(cst2.toString());

 

        Constructor cst3 = c.getEnclosingConstructor();

        System.out.println("3、获取本地或匿名类Constructor 对象,它表示基础类的立即封闭构造方法。");

        if (cst3 != null) System.out.println(cst3.toString());

        else System.out.println("-- 没有获取到任何构造方法!");

 

        Constructor[] csts = c.getConstructors();

        System.out.println("4、获取指定Class对象的所有构造方法:");

        for (int i = 0; i < csts.length; i++) {

            System.out.println(csts[i].toString());

        }

 

        System.out.println("\n-------------------------------\n");

 

        Type types1[] = c.getGenericInterfaces();

        System.out.println("1、返回直接实现的接口:");

        for (int i = 0; i < types1.length; i++) {

            System.out.println(types1[i].toString());

        }

 

        Type type1 = c.getGenericSuperclass();

        System.out.println("2、返回直接超类:");

        System.out.println(type1.toString());

 

        Class[] cis = c.getClasses();

        System.out.println("3、返回超类和所有实现的接口:");

        for (int i = 0; i < cis.length; i++) {

            System.out.println(cis[i].toString());

        }

 

        Class cs1[] = c.getInterfaces();

        System.out.println("4、实现的接口");

        for (int i = 0; i < cs1.length; i++) {

            System.out.println(cs1[i].toString());

        }

 

        System.out.println("\n-------------------------------\n");

 

        Field fs1[] = c.getFields();

        System.out.println("1、类或接口的所有可访问公共字段:");

        for (int i = 0; i < fs1.length; i++) {

            System.out.println(fs1[i].toString());

        }

 

        Field f1 = c.getField("MIN_VALUE");

        System.out.println("2、类或接口的指定已声明指定公共成员字段:");

        System.out.println(f1.toString());

 

        Field fs2[] = c.getDeclaredFields();

        System.out.println("3、类或接口所声明的所有字段:");

        for (int i = 0; i < fs2.length; i++) {

            System.out.println(fs2[i].toString());

        }

 

        Field f2 = c.getDeclaredField("serialVersionUID");

        System.out.println("4、类或接口的指定已声明指定字段:");

        System.out.println(f2.toString());

 

        System.out.println("\n-------------------------------\n");

 

        Method m1[] = c.getMethods();

        System.out.println("1、返回类所有的公共成员方法:");

        for (int i = 0; i < m1.length; i++) {

            System.out.println(m1[i].toString());

        }

 

        Method m2 = c.getMethod("longValue", new Class[]{});

        System.out.println("2、返回指定公共成员方法:");

        System.out.println(m2.toString());

 

    }

}

输出结果:输出结果很长,这里不再给出。

 

 

二、运行时复制对象

 

例程ReflectTester 类进一步演示了Reflection API的基本使用方法。ReflectTester类有一个copy(Object object)方法,这个方法能够创建一个和参数object 同样类型的对象,然后把object对象中的所有属性拷贝到新建的对象中,并将它返回

这个例子只能复制简单的JavaBean,假定JavaBean 的每个属性都有public 类型的getXXX()和setXXX()方法。

 

public class ReflectTester {

    public Object copy(Object object) throws Exception {

        // 获得对象的类型

        Class<?> classType = object.getClass();

        System.out.println("Class:" + classType.getName());

 

        // 通过默认构造方法创建一个新的对象

        Object objectCopy = classType.getConstructor(new Class[]{}).newInstance(new Object[]{});

 

        // 获得对象的所有属性

        Field fields[] = classType.getDeclaredFields();

 

        for (int i = 0; i < fields.length; i++) {

            Field field = fields[i];

 

            String fieldName = field.getName();

            String firstLetter = fieldName.substring(0, 1).toUpperCase();

            // 获得和属性对应的getXXX()方法的名字

            String getMethodName = "get" + firstLetter + fieldName.substring(1);

            // 获得和属性对应的setXXX()方法的名字

            String setMethodName = "set" + firstLetter + fieldName.substring(1);

 

            // 获得和属性对应的getXXX()方法

            Method getMethod = classType.getMethod(getMethodName, new Class[]{});

            // 获得和属性对应的setXXX()方法

            Method setMethod = classType.getMethod(setMethodName, new Class[]{field.getType()});

 

            // 调用原对象的getXXX()方法

            Object value = getMethod.invoke(object, new Object[]{});

            System.out.println(fieldName + ":" + value);

            // 调用拷贝对象的setXXX()方法

            setMethod.invoke(objectCopy, new Object[]{value});

        }

        return objectCopy;

    }

 

    public static void main(String[] args) throws Exception {

        Customer customer = new Customer("Tom", 21);

        customer.setId(new Long(1));

 

        Customer customerCopy = (Customer) new ReflectTester().copy(customer);

        System.out.println("Copy information:" + customerCopy.getId() + " " + customerCopy.getName() + " "

                + customerCopy.getAge());

    }

}

 

class Customer {

    private Long id;

 

    private String name;

 

    private int age;

 

    public Customer() {

    }

 

    public Customer(String name, int age) {

        this.name = name;

        this.age = age;

    }

 

    public Long getId() {

        return id;

    }

 

    public void setId(Long id) {

        this.id = id;

    }

 

    public String getName() {

        return name;

    }

 

    public void setName(String name) {

        this.name = name;

    }

 

    public int getAge() {

        return age;

    }

 

    public void setAge(int age) {

        this.age = age;

    }

}

 

输出结果:

 

Class:com.langsin.reflection.Customer

id:1

name:Tom

age:21

Copy information:1 Tom 21

 

Process finished with exit code 0

 

解说:

ReflectTester 类的copy(Object object)方法依次执行以下步骤

(1)获得对象的类型:

Class classType=object.getClass();

System.out.println("Class:"+classType.getName());

 

(2)通过默认构造方法创建一个新对象:

Object objectCopy=classType.getConstructor(new Class[]{}).newInstance(new Object[]{});

以上代码先调用Class类的getConstructor()方法获得一个Constructor 对象,它代表默认的构造方法,然后调用Constructor对象的newInstance()方法构造一个实例。

 

3)获得对象的所有属性:

Field fields[]=classType.getDeclaredFields();

Class 类的getDeclaredFields()方法返回类的所有属性,包括public、protected、默认和private访问级别的属性

 

(4)获得每个属性相应的getXXX()和setXXX()方法,然后执行这些方法,把原来对象的属性拷贝到新的对象中

 

 

三、用反射机制调用对象的方法

 

public class InvokeTester {

    public int add(int param1, int param2) {

        return param1 + param2;

    }

 

    public String echo(String msg) {

        return "echo: " + msg;

    }

 

    public static void main(String[] args) throws Exception {

        Class<?> classType = InvokeTester.class;

        Object invokeTester = classType.newInstance();

 

        // Object invokeTester = classType.getConstructor(new

        // Class[]{}).newInstance(new Object[]{});

 

 

        //获取InvokeTester类的add()方法

        Method addMethod = classType.getMethod("add", new Class[]{int.class, int.class});

        //调用invokeTester对象上的add()方法

        Object result = addMethod.invoke(invokeTester, new Object[]{new Integer(100), new Integer(200)});

        System.out.println((Integer) result);

 

 

        //获取InvokeTester类的echo()方法

        Method echoMethod = classType.getMethod("echo", new Class[]{String.class});

        //调用invokeTester对象的echo()方法

        result = echoMethod.invoke(invokeTester, new Object[]{"Hello"});

        System.out.println((String) result);

    }

}

 

 

在例程InvokeTester类的main()方法中,运用反射机制调用一个InvokeTester对象的add()和echo()方法

 

add()方法的两个参数为int 类型,获得表示add()方法的Method对象的代码如下:

Method addMethod=classType.getMethod("add",new Class[]{int.class,int.class});

Method类的invoke(Object obj,Object args[])方法接收的参数必须为对象,如果参数为基本类型数据,必须转换为相应的包装类型的对象。invoke()方法的返回值总是对象,如果实际被调用的方法的返回类型是基本类型数据,那么invoke()方法会把它转换为相应的包装类型的对象,再将其返回。

 

在本例中,尽管InvokeTester 类的add()方法的两个参数以及返回值都是int类型,调用add Method 对象的invoke()方法时,只能传递Integer 类型的参数,并且invoke()方法的返回类型也是Integer 类型,Integer 类是int 基本类型的包装类:

 

Object result=addMethod.invoke(invokeTester,

new Object[]{new Integer(100),new Integer(200)});

System.out.println((Integer)result); //result 为Integer类型

 

 

四、动态创建和访问数组

 

java.lang.Array 类提供了动态创建和访问数组元素的各种静态方法。

 

例程ArrayTester1 类的main()方法创建了一个长度为10 的字符串数组,接着把索引位置为5 的元素设为“hello”,然后再读取索引位置为5 的元素的值

 

public class ArrayTester1 {

    public static void main(String args[]) throws Exception {

        Class<?> classType = Class.forName("java.lang.String");

        // 创建一个长度为10的字符串数组

        Object array = Array.newInstance(classType, 10);

        // 把索引位置为5的元素设为"hello"

        Array.set(array, 5, "hello");

        // 获得索引位置为5的元素的值

        String s = (String) Array.get(array, 5);

        System.out.println(s);

    }

}

 

 

例程ArrayTester2 类的main()方法创建了一个 5 x 10 x 15 的整型数组,并把索引位置为[3][5][10] 的元素的值为设37。

 

public class ArrayTester2 {

    public static void main(String args[]) {

        int[] dims = new int[]{5, 10, 15};

        //创建一个具有指定的组件类型和维度的新数组。

        Object array = Array.newInstance(Integer.TYPE, dims);

       

        Object arrayObj = Array.get(array, 3);

        Class<?> cls = arrayObj.getClass().getComponentType();

        System.out.println(cls);

 

        arrayObj = Array.get(arrayObj, 5);

        Array.setInt(arrayObj, 10, 37);

        int arrayCast[][][] = (int[][][]) array;

        System.out.println(arrayCast[3][5][10]);

    }

}

 

 

深入认识Class类

 

众所周知Java有个Object类,是所有Java类的继承根源,其内声明了数个应该在所有Java类中被改写的方法:hashCode()、equals()、clone()、toString()、getClass()等。其中getClass()返回一个Class类的对象。

 

Class类十分特殊。它和一般classes一样继承自Object,其实体用以表达Java程序运行时的classes和interfaces,也用来表达enum、array、primitive Java types

(boolean, byte, char, short, int, long, float, double)以及关键词void。当一个class被加载,或当加载器(class loader)的defineClass()被JVM调用,JVM 便自动产生一个Class object。如果您想借由“修改Java标准库源码”来观察Class object的实际生成时机(例如在Class的constructor内添加一个println()),不能够!因为Class并没有public constructor

 

Class是Reflection起源。针对任何您想探勘的class,唯有先为它产生一个Class object,接下来才能经由后者唤起为数十多个的Reflection APIs

 

Java允许我们从多种途径为一个class生成对应的Class对象。参看本人的《 深入研究java.long.Class类 》一文。

 

欲生成对象实体,在Reflection 动态机制中有两种作法,一个针对“无自变量ctor”,一个针对“带参数ctor”。如果欲调用的是“带参数ctor“就比较麻烦些,不再调用Class的newInstance(),而是调用Constructor 的newInstance()。首先准备一个Class[]做为ctor的参数类型(本例指定

为一个double和一个int),然后以此为自变量调用getConstructor(),获得一个专属ctor。接下来再准备一个Object[] 做为ctor实参值(本例指定3.14159和125),调用上述专属ctor的newInstance()。

 

动态生成“Class object 所对应之class”的对象实体;无自变量。

 

这个动作和上述调用“带参数之ctor”相当类似。首先准备一个Class[]做为参数类型(本例指定其中一个是String,另一个是Hashtable),然后以此为自变量调用getMethod(),获得特定的Method object。接下来准备一个Object[]放置自变量,然后调用上述所得之特定Method object的invoke()。

为什么获得Method object时不需指定回返类型?

 

因为method overloading机制要求signature必须唯一,而回返类型并非signature的一个成份。换句话说,只要指定了method名称和参数列,就一定指出了一个独一无二的method。

 

 

四、运行时变更field内容

 

与先前两个动作相比,“变更field内容”轻松多了,因为它不需要参数和自变量。首先调用Class的getField()并指定field名称。获得特定的Field object之后便可直接调用Field的get()和set()。

 

public class RefFiled {

    public double x;

    public Double y;

 

    public static void main(String args[]) throws NoSuchFieldException, IllegalAccessException {

        Class c = RefFiled.class;

        Field xf = c.getField("x");

        Field yf = c.getField("y");

 

        RefFiled obj = new RefFiled();

 

        System.out.println("变更前x=" + xf.get(obj));

        //变更成员x值

        xf.set(obj, 1.1);

        System.out.println("变更后x=" + xf.get(obj));

 

        System.out.println("变更前y=" + yf.get(obj));

        //变更成员y值

        yf.set(obj, 2.1);

        System.out.println("变更后y=" + yf.get(obj));

    }

}

 

运行结果:

 

变更前x=0.0

变更后x=1.1

变更前y=null

变更后y=2.1

 

Process finished with exit code 0

 

 

参考资料:

此例的部分文字解说和源码来自浪曦论坛 http://bbs.langsin.com。

侯捷的《候捷谈Java反射机制》[url]http://www.j2medev.com/Article/Class3/Class7/200604/1995.html[/url]

think in java

Java核心技术

 

声明:本文是在参考了大量资料基础上,摸索运用,总结的基础上完成的。

由于每次书写间隔非常长,参考的资料不能一一写出来,如有侵权,本人将在第一时间删除侵权的内容。

 



本文转自 leizhimin 51CTO博客,原文链接:http://blog.51cto.com/lavasoft/43218,如需转载请自行联系原作者

相关文章
|
1月前
|
网络协议 算法 Java
|
1月前
|
Java
Java并发编程中的锁机制
【2月更文挑战第22天】 在Java并发编程中,锁机制是一种重要的同步手段,用于保证多个线程在访问共享资源时的安全性。本文将介绍Java锁机制的基本概念、种类以及使用方法,帮助读者深入理解并发编程中的锁机制。
|
1月前
|
Java 程序员
Java中的异常处理机制
【2月更文挑战第22天】在Java编程中,异常处理是一个重要的概念。它允许程序员在程序执行过程中遇到错误时,对错误进行处理,而不是让程序崩溃。本文将介绍Java中的异常处理机制,包括异常的分类、如何捕获和处理异常以及自定义异常等内容。
17 1
|
1月前
|
XML Java 数据库连接
谈谈Java反射:从入门到实践,再到原理
谈谈Java反射:从入门到实践,再到原理
58 0
|
1月前
|
Java 关系型数据库 MySQL
在Java的反射中,Class.forName和ClassLoader的区别
在Java的反射中,Class.forName和ClassLoader的区别
35 3
|
25天前
|
开发框架 Java API
java反射机制的原理与简单使用
java反射机制的原理与简单使用
17 1
|
7天前
|
Java
代码的魔法师:Java反射工厂模式详解
代码的魔法师:Java反射工厂模式详解
18 0
|
11天前
|
安全 Java
java反射篇
java反射篇
|
11天前
|
存储 Java
java反射——设计框架的灵魂
java反射——设计框架的灵魂
|
13天前
|
安全 Java 调度
深入理解Java中的线程安全与锁机制
【4月更文挑战第6天】 在并发编程领域,Java语言提供了强大的线程支持和同步机制来确保多线程环境下的数据一致性和线程安全性。本文将深入探讨Java中线程安全的概念、常见的线程安全问题以及如何使用不同的锁机制来解决这些问题。我们将从基本的synchronized关键字开始,到显式锁(如ReentrantLock),再到读写锁(ReadWriteLock)的讨论,并结合实例代码来展示它们在实际开发中的应用。通过本文,读者不仅能够理解线程安全的重要性,还能掌握如何有效地在Java中应用各种锁机制以保障程序的稳定运行。