Java:使用wait()与notify()实现线程间协作

简介:
使用 wait() notify()/notifyAll() 可以使得多个任务之间彼此协作。
1. wait() notify()/notifyAll()

调用 sleep() yield() 的时候锁并没有被释放,而调用 wait() 将释放锁。这样另一个任务(线程)可以获得当前对象的锁,从而进入它的 synchronized 方法中。可以通过 notify()/notifyAll() ,或者时间到期,从 wait() 中恢复执行。
只能在同步控制方法或同步块中调用 wait() notify() notifyAll() 。如果在非同步的方法里调用这些方法,在运行时会抛出 IllegalMonitorStateException 异常。
2. 模拟单个线程对多个线程的唤醒

模拟线程之间的协作。Game 类有2个同步方法 prepare() go() 。标志位 start 用于判断当前线程是否需要 wait() 。Game 类的实例首先启动所有的 Athele 类实例,使其进入 wait() 状态,在一段时间后,改变标志位并 notifyAll() 所有处于 wait 状态的 Athele 线程。
Game.java
package concurrency;

import java.util.Collection;
import java.util.Collections;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Set;

class Athlete  implements Runnable {
     private  final  int id;
     private Game game;

     public Athlete( int id, Game game) {
       this.id = id;
       this.game = game;
    }

     public  boolean equals(Object o) {
       if (!(o  instanceof Athlete))
         return  false;
      Athlete athlete = (Athlete) o;
       return id == athlete.id;
    }

     public String toString() {
       return  "Athlete<" + id +  ">";
    }

     public  int hashCode() {
       return  new Integer(id).hashCode();
    }

     public  void run() {
       try {
        game.prepare( this);
      }  catch (InterruptedException e) {
        System.out.println( this +  " quit the game");
      }
    }
  }

public  class Game  implements Runnable {
     private Set<Athlete> players =  new HashSet<Athlete>();
     private  boolean start =  false;

     public  void addPlayer(Athlete one) {
      players.add(one);
    }

     public  void removePlayer(Athlete one) {
      players.remove(one);
    }

     public Collection<Athlete> getPlayers() {
       return Collections.unmodifiableSet(players);
    }

     public  void prepare(Athlete athlete)  throws InterruptedException {
      System.out.println(athlete +  " ready!");
       synchronized ( this) {
         while (!start)
        wait();
         if (start)
          System.out.println(athlete +  " go!");
      }
    }

     public  synchronized  void go() {
      notifyAll();
    }
    
     public  void ready() {
      Iterator<Athlete> iter = getPlayers().iterator();
       while (iter.hasNext())
         new Thread(iter.next()).start();
    }

     public  void run() {
      start =  false;
      System.out.println( "Ready......");
      System.out.println( "Ready......");
      System.out.println( "Ready......");
      ready();
      start =  true;
      System.out.println( "Go!");
      go();
    }

     public  static  void main(String[] args) {
      Game game =  new Game();
       for ( int i = 0; i < 10; i++)
        game.addPlayer( new Athlete(i, game));
       new Thread(game).start();
    }
}
结果:
Ready......
Ready......
Ready......
Athlete<0> ready!
Athlete<1> ready!
Athlete<2> ready!
Athlete<3> ready!
Athlete<4> ready!
Athlete<5> ready!
Athlete<6> ready!
Athlete<7> ready!
Athlete<8> ready!
Athlete<9> ready!
Go!
Athlete<9> go!
Athlete<8> go!
Athlete<7> go!
Athlete<6> go!
Athlete<5> go!
Athlete<4> go!
Athlete<3> go!
Athlete<2> go!
Athlete<1> go!
Athlete<0> go!

3. 模拟忙等待过程

MyObject 类的实例是被观察者,当观察事件发生时,它会通知一个 Monitor 类的实例(通知的方式是改变一个标志位)。而此 Monitor 类的实例是通过忙等待来不断的检查标志位是否变化。
BusyWaiting.java
import java.util.concurrent.TimeUnit;

class MyObject  implements Runnable {
     private Monitor monitor;

     public MyObject(Monitor monitor) {
       this.monitor = monitor;
    }

     public  void run() {
       try {
        TimeUnit.SECONDS.sleep(3);
        System.out.println( "i'm going.");
        monitor.gotMessage();
      }  catch (InterruptedException e) {
        e.printStackTrace();
      }
    }
}

class Monitor  implements Runnable {
     private  volatile  boolean go =  false;

     public  void gotMessage()  throws InterruptedException {
      go =  true;
    }

     public  void watching() {
       while (go ==  false)
        ;
      System.out.println( "He has gone.");
    }

     public  void run() {
      watching();
    }
}

public  class BusyWaiting {
     public  static  void main(String[] args) {
      Monitor monitor =  new Monitor();
      MyObject o =  new MyObject(monitor);
       new Thread(o).start();
       new Thread(monitor).start();
    }
}
结果:
i'm going.

He has gone.
4. 使用 wait() notify() 改写上面的例子

下面的例子通过 wait() 来取代忙等待机制,当收到通知消息时, notify 当前 Monitor 类线程。
Wait.java
package concurrency.wait;

import java.util.concurrent.TimeUnit;

class MyObject  implements Runnable {
     private Monitor monitor;

     public MyObject(Monitor monitor) {
       this.monitor = monitor;
    }

     public  void run() {
       try {
        TimeUnit.SECONDS.sleep(3);
        System.out.println( "i'm going.");
        monitor.gotMessage();
      }  catch (InterruptedException e) {
        e.printStackTrace();
      }
    }
}

class Monitor  implements Runnable {
     private  volatile  boolean go =  false;

     public  synchronized  void gotMessage()  throws InterruptedException {
      go =  true;
      notify();
    }

     public  synchronized  void watching()  throws InterruptedException {
       while (go ==  false)
        wait();
      System.out.println( "He has gone.");
    }

     public  void run() {
       try {
        watching();
      }  catch (InterruptedException e) {
        e.printStackTrace();
      }
    }
}

public  class Wait {
     public  static  void main(String[] args) {
      Monitor monitor =  new Monitor();
      MyObject o =  new MyObject(monitor);
       new Thread(o).start();
       new Thread(monitor).start();
    }
}
结果:
i'm going.

He has gone.


本文转自zhangjunhd51CTO博客,原文链接:http://blog.51cto.com/zhangjunhd/71387,如需转载请自行联系原作者
相关文章
|
7天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
7天前
|
安全 Java 开发者
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第9天】本文将深入探讨Java并发编程的核心概念,包括线程安全和性能优化。我们将详细解析Java中的同步机制,包括synchronized关键字、Lock接口以及并发集合等,并探讨它们如何影响程序的性能。此外,我们还将讨论Java内存模型,以及它如何影响并发程序的行为。最后,我们将提供一些实用的并发编程技巧和最佳实践,帮助开发者编写出既线程安全又高效的Java程序。
20 3
|
7天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。
|
5天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
1天前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
2天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
4天前
|
Java
探秘jstack:解决Java应用线程问题的利器
探秘jstack:解决Java应用线程问题的利器
14 1
探秘jstack:解决Java应用线程问题的利器
|
4天前
|
Java 调度 开发者
Java 21时代的标志:虚拟线程带来的并发编程新境界
Java 21时代的标志:虚拟线程带来的并发编程新境界
14 0
|
6天前
|
监控 安全 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第10天】 在Java开发中,并发编程是提升应用性能和响应能力的关键手段。然而,线程安全问题和性能调优常常成为开发者面临的挑战。本文将通过分析Java并发模型的核心原理,探讨如何平衡线程安全与系统性能。我们将介绍关键的同步机制,包括synchronized关键字、显式锁(Lock)以及并发集合等,并讨论它们在不同场景下的优势与局限。同时,文章将提供实用的代码示例和性能测试方法,帮助开发者在保证线程安全的前提下,实现高效的并发处理。
|
7天前
|
存储 安全 Java
java多线程之原子操作类
java多线程之原子操作类