Android应用程序键盘(Keyboard)消息处理机制分析(1)

简介:

      在Android系统中,键盘按键事件是由WindowManagerService服务来管理的,然后再以消息的形式来分发给应用程序处理,不过和普通消息不一样,它是由硬件中断触发的;在上一篇文章《Android应用程序消息处理机制(Looper、Handler)分析》中,我们分析了Android应用程序的消息处理机制,本文将结合这种消息处理机制来详细分析Android应用程序是如何获得键盘按键消息的。

        在系统启动的时候,SystemServer会启动窗口管理服务WindowManagerService,WindowManagerService在启动的时候就会通过系统输入管理器InputManager来总负责监控键盘消息。这些键盘消息一般都是分发给当前激活的Activity窗口来处理的,因此,当前激活的Activity窗口在创建的时候,会到WindowManagerService中去注册一个接收键盘消息的通道,表明它要处理键盘消息,而当InputManager监控到有键盘消息时,就会分给给它处理。当当前激活的Activity窗口不再处于激活状态时,它也会到WindowManagerService中去反注册之前的键盘消息接收通道,这样,InputManager就不会再把键盘消息分发给它来处理。

        由于本文的内容比较多,在接下面的章节中,我们将分为五个部分来详细描述Android应用程序获得键盘按键消息的过程,每一个部分都是具体描述键盘消息处理过程中的一个过程。结合上面的键盘消息处理框架,这四个过程分别是InputManager的启动过程、应用程序注册键盘消息接收通道的过程、InputManager分发键盘消息给应用程序的过程以及应用程序注销键盘消息接收通道的过程。为了更好地理解Android应用程序获得键盘按键消息的整个过程,建议读者首先阅读Android应用程序消息处理机制(Looper、Handler)分析一文,理解了Android应用程序的消息处理机制后,就能很好的把握本文的内容。

        1. InputManager的启动过程分析 

        前面说过,Android系统的键盘事件是由InputManager来监控的,而InputManager是由窗口管理服务WindowManagerService来启动的。

 

        从前面一篇文章Android系统进程Zygote启动过程的源代码分析中,我们知道在Android系统中,Zygote进程负责启动系统服务进程SystemServer,而系统服务进程SystemServer负责启动系统中的各种关键服务,例如我们在前面两篇文章Android应用程序安装过程源代码分析Android系统默认Home应用程序(Launcher)的启动过程源代码分析中提到的Package管理服务PackageManagerService和Activity管理服务ActivityManagerService。这里我们所讨论的窗口管理服务WindowManagerService也是由SystemServer来启动的,具体的启动过程这里就不再详述了,具体可以参考PackageManagerService和ActivityManagerService的启动过程。

       了解了WindowManagerService的启动过程之后,我们就可以继续分析InputManager的启动过程了。我们先来看一下InputManager启动过程的序列图,然后根据这个序列图来一步步分析它的启动过程:

 

        Step 1. WindowManagerService.main

        这个函数定义在frameworks/base/services/java/com/android/server/WindowManagerService.java文件中:

 
 
  1. public class WindowManagerService extends IWindowManager.Stub   
  2.         implements Watchdog.Monitor {   
  3.     ......   
  4.    
  5.     public static WindowManagerService main(Context context,   
  6.             PowerManagerService pm, boolean haveInputMethods) {   
  7.         WMThread thr = new WMThread(context, pm, haveInputMethods);   
  8.         thr.start();   
  9.    
  10.         synchronized (thr) {   
  11.             while (thr.mService == null) {   
  12.                 try {   
  13.                     thr.wait();   
  14.                 } catch (InterruptedException e) {   
  15.                 }   
  16.             }   
  17.             return thr.mService;   
  18.         }   
  19.     }   
  20.    
  21.     ......   
  22. }   

 

 

      它通过一个线程WMThread实例来执行全局唯一的WindowManagerService实例的启动操作。这里调用WMThread实例thr的start成员函数时,会进入到WMThread实例thr的run函数中去。

 

        Step 2. WMThread.run

        这个函数定义在frameworks/base/services/java/com/android/server/WindowManagerService.java文件中:

  1. public class WindowManagerService extends IWindowManager.Stub  
  2.         implements Watchdog.Monitor {  
  3.     ......  
  4.   
  5.     static class WMThread extends Thread {  
  6.         ......  
  7.   
  8.         public void run() {  
  9.             ......  
  10.   
  11.             WindowManagerService s = new WindowManagerService(mContext, mPM,  
  12.                 mHaveInputMethods);  
  13.             ......  
  14.         }  
  15.     }  
  16.   
  17.   
  18.     ......  
  19. }  

 

      这里执行的主要操作就是创建一个WindowManagerService实例,这样会调用到WindowManagerService构造函数中去。

 

       Step 3. WindowManagerService<init>

       WindowManagerService类的构造函数定义在frameworks/base/services/java/com/android/server/WindowManagerService.java文件中:

  1. public class WindowManagerService extends IWindowManager.Stub  
  2.         implements Watchdog.Monitor {  
  3.     ......  
  4.   
  5.     final InputManager mInputManager;  
  6.   
  7.     ......  
  8.   
  9.     private WindowManagerService(Context context, PowerManagerService pm,  
  10.             boolean haveInputMethods) {  
  11.         ......  
  12.   
  13.         mInputManager = new InputManager(context, this);  
  14.   
  15.         ......  
  16.   
  17.         mInputManager.start();  
  18.   
  19.         ......  
  20.     }  
  21.   
  22.   
  23.     ......  
  24. }  

         这里我们只关心InputManager的创建过程,而忽略其它无关部分。首先是创建一个InputManager实例,然后再调用它的start成员函数来监控键盘事件。在创建InputManager实例的过程中,会执行一些初始化工作,因此,我们先进入到InputManager类的构造函数去看看,然后再回过头来分析它的start成员函数。

 

         Step 4. InputManager<init>@java

         Java层的InputManager类的构造函数定义在frameworks/base/services/java/com/android/server/InputManager.java文件中:

  1. public class InputManager {  
  2.     ......  
  3.   
  4.     public InputManager(Context context, WindowManagerService windowManagerService) {  
  5.         this.mContext = context;  
  6.         this.mWindowManagerService = windowManagerService;  
  7.   
  8.         this.mCallbacks = new Callbacks();  
  9.   
  10.         init();  
  11.     }  
  12.   
  13.     ......  
  14. }  

     这里只是简单地初始化InputManager类的一些成员变量,然后调用init函数进一步执行初始化操作。

 

        Step 5. InputManager.init

        这个函数定义在frameworks/base/services/java/com/android/server/InputManager.java文件中:

  1. public class InputManager {  
  2.     ......  
  3.   
  4.     private void init() {  
  5.         Slog.i(TAG, "Initializing input manager");  
  6.         nativeInit(mCallbacks);  
  7.     }  
  8.   
  9.     ......  
  10. }  

 函数init通过调用本地方法nativeInit来执行C++层的相关初始化操作。 





本文转自 Luoshengyang 51CTO博客,原文链接:http://blog.51cto.com/shyluo/966609,如需转载请自行联系原作者
目录
相关文章
|
16天前
|
移动开发 Java Android开发
构建高效Android应用:探究Kotlin与Java的性能差异
【4月更文挑战第3天】在移动开发领域,性能优化一直是开发者关注的焦点。随着Kotlin的兴起,其在Android开发中的地位逐渐上升,但关于其与Java在性能方面的对比,尚无明确共识。本文通过深入分析并结合实际测试数据,探讨了Kotlin与Java在Android平台上的性能表现,揭示了在不同场景下两者的差异及其对应用性能的潜在影响,为开发者在选择编程语言时提供参考依据。
|
17天前
|
数据库 Android开发 开发者
构建高效Android应用:Kotlin协程的实践指南
【4月更文挑战第2天】随着移动应用开发的不断进步,开发者们寻求更流畅、高效的用户体验。在Android平台上,Kotlin语言凭借其简洁性和功能性赢得了开发社区的广泛支持。特别是Kotlin协程,作为一种轻量级的并发处理方案,使得异步编程变得更加简单和直观。本文将深入探讨Kotlin协程的核心概念、使用场景以及如何将其应用于Android开发中,以提高应用性能和响应能力。通过实际案例分析,我们将展示协程如何简化复杂任务,优化资源管理,并为最终用户提供更加流畅的体验。
|
17天前
|
开发框架 安全 Android开发
探索安卓系统的新趋势:智能家居应用的蓬勃发展
随着智能家居概念的兴起,安卓系统在智能家居应用领域的应用日益广泛。本文将探讨安卓系统在智能家居应用开发方面的最新趋势和创新,以及其对用户生活的影响。
13 2
|
1天前
|
缓存 移动开发 Android开发
构建高效Android应用:从优化用户体验到提升性能表现
【4月更文挑战第18天】 在移动开发的世界中,打造一个既快速又流畅的Android应用并非易事。本文深入探讨了如何通过一系列创新的技术策略来提升应用性能和用户体验。我们将从用户界面(UI)设计的简约性原则出发,探索响应式布局和Material Design的实践,再深入剖析后台任务处理、内存管理和电池寿命优化的技巧。此外,文中还将讨论最新的Android Jetpack组件如何帮助开发者更高效地构建高质量的应用。此内容不仅适合经验丰富的开发者深化理解,也适合初学者构建起对Android高效开发的基础认识。
2 0
|
1天前
|
移动开发 Android开发 开发者
构建高效Android应用:采用Kotlin进行内存优化的策略
【4月更文挑战第18天】 在移动开发领域,性能优化一直是开发者关注的焦点。特别是对于Android应用而言,由于设备和版本的多样性,确保应用流畅运行且占用资源少是一大挑战。本文将探讨使用Kotlin语言开发Android应用时,如何通过内存优化来提升应用性能。我们将从减少不必要的对象创建、合理使用数据结构、避免内存泄漏等方面入手,提供实用的代码示例和最佳实践,帮助开发者构建更加高效的Android应用。
5 0
|
3天前
|
缓存 移动开发 Java
构建高效的Android应用:内存优化策略
【4月更文挑战第16天】 在移动开发领域,尤其是针对资源有限的Android设备,内存优化是提升应用性能和用户体验的关键因素。本文将深入探讨Android应用的内存管理机制,分析常见的内存泄漏问题,并提出一系列实用的内存优化技巧。通过这些策略的实施,开发者可以显著减少应用的内存占用,避免不必要的后台服务,以及提高垃圾回收效率,从而延长设备的电池寿命并确保应用的流畅运行。
|
5天前
|
搜索推荐 开发工具 Android开发
安卓即时应用(Instant Apps)开发指南
【4月更文挑战第14天】Android Instant Apps让用户体验部分应用功能而无需完整下载。开发者需将应用拆分成模块,基于已上线的基础应用构建。使用Android Studio的Instant Apps Feature Library定义模块特性,优化代码与资源以减小模块大小,同步管理即时应用和基础应用的版本。经过测试,可发布至Google Play Console,提升用户便利性,创造新获客机会。
|
6天前
|
Java API 调度
安卓多线程和并发处理:提高应用效率
【4月更文挑战第13天】本文探讨了安卓应用中多线程和并发处理的优化方法,包括使用Thread、AsyncTask、Loader、IntentService、JobScheduler、WorkManager以及线程池。此外,还介绍了RxJava和Kotlin协程作为异步编程工具。理解并恰当运用这些技术能提升应用效率,避免UI卡顿,确保良好用户体验。随着安卓技术发展,更高级的异步处理工具将助力开发者构建高性能应用。
|
6天前
|
编解码 人工智能 测试技术
安卓适配性策略:确保应用在不同设备上的兼容性
【4月更文挑战第13天】本文探讨了提升安卓应用兼容性的策略,包括理解平台碎片化、设计响应式UI(使用dp单位,考虑横竖屏)、利用Android SDK的兼容工具(支持库、资源限定符)、编写兼容性代码(运行时权限、设备特性检查)以及优化性能以适应低端设备。适配性是安卓开发的关键,通过这些方法可确保应用在多样化设备上提供一致体验。未来,自动化测试和AI将助力应对设备碎片化挑战。
|
12天前
|
移动开发 API Android开发
构建高效Android应用:探究Kotlin协程的优势与实践
【4月更文挑战第7天】 在移动开发领域,性能优化和应用响应性的提升一直是开发者追求的目标。近年来,Kotlin语言因其简洁性和功能性在Android社区中受到青睐,特别是其对协程(Coroutines)的支持,为编写异步代码和处理并发任务提供了一种更加优雅的解决方案。本文将探讨Kotlin协程在Android开发中的应用,揭示其在提高应用性能和简化代码结构方面的潜在优势,并展示如何在实际项目中实现和优化协程。