Druid(准)实时分析统计数据库——列存储+高效压缩

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

Druid是一个开源的、分布式的、列存储系统,特别适用于大数据上的(准)实时分析统计。且具有较好的稳定性(Highly Available)。 其相对比较轻量级,文档非常完善,也比较容易上手。

Druid vs 其他系统

Druid vs Impala/Shark

Druid和Impala、Shark 的比较基本上可以归结为需要设计什么样的系统

Druid被设计用于:

  1. 一直在线的服务
  2. 获取实时数据
  3. 处理slice-n-dice式的即时查询

查询速度不同:

  • Druid是列存储方式,数据经过压缩加入到索引结构中,压缩增加了RAM中的数据存储能力,能够使RAM适应更多的数据快速存取。索引结构意味着,当添加过滤器来查询,Druid少做一些处理,将会查询的更快。
  • Impala/Shark可以认为是HDFS之上的后台程序缓存层。 但是他们没有超越缓存功能,真正的提高查询速度。

数据的获取不同:

  • Druid可以获取实时数据。
  • Impala/Shark是基于HDFS或者其他后备存储,限制了数据获取的速度。

查询的形式不同:

  • Druid支持时间序列和groupby样式的查询,但不支持join。
  • Impala/Shark支持SQL样式的查询。

Druid vs Elasticsearch

Elasticsearch(ES) 是基于Apache Lucene的搜索服务器。它提供了全文搜索的模式,并提供了访问原始事件级数据。 Elasticsearch还提供了分析和汇总支持。根据研究,ES在数据获取和聚集用的资源比在Druid高。

Druid侧重于OLAP工作流程。Druid是高性能(快速聚集和获取)以较低的成本进行了优化,并支持广泛的分析操作。Druid提供了结构化的事件数据的一些基本的搜索支持。

 

Segment: Druid中有个重要的数据单位叫segment,其是Druid通过bitmap indexing从raw data生成的(batch or realtime)。segment保证了查询的速度。可以自己设置每个segment对应的数据粒度,这个应用中广告流量查询的最小粒度是天,所以每天的数据会被创建成一个segment。注意segment是不可修改的,如果需要修改,只能够修改raw data,重新创建segment了。

架构

Druid本身包含5个组成部分:Broker nodes, Historical nodes, Realtime nodes, Coordinator Nodes和indexing services. 分别的作用如下:

  • Broker nodes: 负责响应外部的查询请求,通过查询Zookeeper将请求划分成segments分别转发给Historical和Real-time nodes,最终合并并返回查询结果给外部;
  • Historial nodes: 负责’Historical’ segments的存储和查询。其会从deep storage中load segments,并响应Broder nodes的请求。Historical nodes通常会在本机同步deep storage上的部分segments,所以即使deep storage不可访问了,Historical nodes还是能serve其同步的segments的查询;
  • Real-time nodes: 用于存储和查询热数据,会定期地将数据build成segments移到Historical nodes。一般会使用外部依赖kafka来提高realtime data ingestion的可用性。如果不需要实时ingest数据到cluter中,可以舍弃Real-time nodes,只定时地batch ingestion数据到deep storage;
  • Coordinator nodes: 可以认为是Druid中的master,其通过Zookeeper管理Historical和Real-time nodes,且通过Mysql中的metadata管理Segments
  • Druid中通常还会起一些indexing services用于数据导入,batch data和streaming data都可以通过给indexing services发请求来导入数据。

Druid还包含3个外部依赖

  • Mysql:存储Druid中的各种metadata(里面的数据都是Druid自身创建和插入的),包含3张表:”druid_config”(通常是空的), “druid_rules”(coordinator nodes使用的一些规则信息,比如哪个segment从哪个node去load)和“druid_segments”(存储每个segment的metadata信息);
  • Deep storage: 存储segments,Druid目前已经支持本地磁盘,NFS挂载磁盘,HDFS,S3等。Deep Storage的数据有2个来源,一个是batch Ingestion, 另一个是real-time nodes;
  • ZooKeeper: 被Druid用于管理当前cluster的状态,比如记录哪些segments从Real-time nodes移到了Historical nodes;

查询

Druid的查询是通过给Broker Nodes发送HTTP POST请求(也可以直接给Historical or Realtime Node),具体可见Druid官方文档。查询条件的描述是json文件,查询的response也是json格式。Druid的查询包含如下4种:

  • Time Boundary Queries: 用于查询全部数据的时间跨度
  • groupBy Queries: 是Druid的最典型查询方式,非常类似于Mysql的groupBy查询。query body中几个元素可以这么理解:    
    • “aggregation”: 对应mysql”select XX from”部分,即你想查哪些列的聚合结果;
    • “dimensions”: 对应mysql”group by XX”,即你想基于哪些列做聚合;
    • “filter”: 对应mysql”where XX”条件,即过滤条件;
    • “granularity”: 数据聚合的粒度;
  • Timeseries queries: 其统计满足filter条件的”rows”上某几列的聚合结果,相比”groupBy Queries”不指定基于哪几列进行聚合,效率更高;
  • TopN queries: 用于查询某一列上按照某种metric排序的最常见的N个values;

本文小结

  1. Druid是一个开源的,分布式的,列存储的,适用于实时数据分析的系统,文档详细,易于上手;    
    • Druid在设计时充分考虑到了Highly Available,各种nodes挂掉都不会使得druid停止工作(但是状态会无法更新);
    • Druid中的各个components之间耦合性低,如果不需要streaming data ingestion完全可以忽略realtime node;
    • Druid的数据单位Segment是不可修改的,我们的做法是生成新的segments替换现有的;
    • Druid使用Bitmap indexing加速column-store的查询速度,使用了一个叫做CONCISE的算法来对bitmap indexing进行压缩,使得生成的segments比原始文本文件小很多;
  2. 在我们的应用场景下(一共10几台机器,数据大概100列,行数是亿级别),平均查询时间<2秒,是同样机器数目的Mysql cluter的1/100 ~ 1/10;
  3. Druid的一些“局限”:
    • Segment的不可修改性简化了Druid的实现,但是如果你有修改数据的需求,必须重新创建segment,而bitmap indexing的过程是比较耗时的;
    • Druid能接受的数据的格式相对简单,比如不能处理嵌套结构的数据
















 


   本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/6248172.html,如需转载请自行联系原作者    


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
0
0
0
64
分享
相关文章
【赵渝强老师】达梦数据库的逻辑存储结构
本文介绍了达梦数据库的存储结构,包括逻辑和物理存储两部分。逻辑存储结构由数据库(Database)、表空间(Tablespaces)、段(Segments)、簇(Cluster)和页(Page)组成。数据库是最大逻辑单元,包含所有表、索引等;表空间由数据文件组成,用于存储对象;段由簇构成,簇包含连续的数据页;页是最小存储单元。文中还提供了查询表空间、段和页大小的SQL语句,并附有视频讲解和示意图。
【赵渝强老师】达梦数据库的物理存储结构
本文介绍了达梦数据库的存储结构及各类物理文件的作用。达梦数据库通过逻辑和物理存储结构管理数据,包含配置文件(如dm.ini、sqllog.ini)、控制文件(dm.ctl)、数据文件(*.dbf)、重做日志文件(*.log)、归档日志文件、备份文件(*.bak)等。配置文件用于功能设置,控制文件记录数据库初始信息,数据文件存储实际数据,重做日志用于故障恢复,归档日志增强数据安全性,备份文件保障数据完整性,跟踪与事件日志辅助问题分析。这些文件共同确保数据库高效、稳定运行。
消防行业如何借助时序数据库 TDengine 打造高效的数据监控与分析系统
本篇文章来自“2024,我想和 TDengine 谈谈”征文活动的优秀投稿,深入探讨了如何在消防行业中运用 TDengine 进行业务建模。文章重点介绍了如何通过 TDengine 的超级表、标签设计和高效查询功能,有效管理消防监控系统中的时序数据。作者详细阐述了实时监控、报警系统以及历史数据分析在消防行业中的应用,展示了 TDengine 在数据压缩、保留策略和分布式架构下的强大优势。
28 0
2600 万表流计算分析如何做到? 时序数据库 TDengine 助力数百家超市智能化转型
在生鲜超市的高效运营中,实时数据分析至关重要。万象云鼎的“云鲜生”通过智能秤+网关+软件系统的组合,实现了销售数据的精准管理与优化。而在数据处理方面,TDengine 的流计算能力成为了这一方案的核心支撑。本文详细分享了“云鲜生”如何利用 TDengine 高效存储和分析海量销售数据,在优化超市运营、提升用户体验的同时,解决高基数分组、高并发查询等技术挑战。
44 1
PolarDB开源数据库进阶课3 共享存储在线扩容
本文继续探讨穷鬼玩PolarDB RAC一写多读集群系列,介绍如何在线扩容共享存储。实验环境依赖《在Docker容器中用loop设备模拟共享存储》搭建。主要步骤包括:1) 扩容虚拟磁盘;2) 刷新loop设备容量;3) 使用PFS工具进行文件系统扩容;4) 更新数据库实例以识别新空间。通过这些步骤,成功将共享存储从20GB扩容至30GB,并确保所有节点都能使用新的存储空间。
35 1
时序数据库 TDengine 化工新签约:存储降本一半,查询提速十倍
化工行业在数字化转型过程中面临数据接入复杂、实时性要求高、系统集成难度大等诸多挑战。福州力川数码科技有限公司科技依托深厚的行业积累,精准聚焦行业痛点,并携手 TDengine 提供高效解决方案。
54 0
瑶池数据库大讲堂|PolarDB HTAP:为在线业务插上实时分析的翅膀
瑶池数据库大讲堂介绍PolarDB HTAP,为在线业务提供实时分析能力。内容涵盖MySQL在线业务的分析需求与现有解决方案、PolarDB HTAP架构优化、针对分析型负载的优化(如向量化执行、多核并行处理)及近期性能改进和用户体验提升。通过这些优化,PolarDB HTAP实现了高效的数据处理和查询加速,帮助用户更好地应对复杂业务场景。
列式存储数据库与超市的关系?
列式存储数据库是一种高效的数据管理方式,类似于超市将相似商品集中摆放。它将相同类型的数据(如年龄、价格)归类存储,便于快速查询和压缩,广泛应用于市场分析、财务报告和健康数据分析等领域。知名产品包括HBase、ClickHouse、Druid和Apache Cassandra等,适合处理大规模数据和实时分析任务。
67 4
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
【YashanDB知识库】原生mysql驱动配置连接崖山数据库
docker拉取MySQL后数据库连接失败解决方案
通过以上方法,可以解决Docker中拉取MySQL镜像后数据库连接失败的常见问题。关键步骤包括确保容器正确启动、配置正确的环境变量、合理设置网络和权限,以及检查主机防火墙设置等。通过逐步排查,可以快速定位并解决连接问题,确保MySQL服务的正常使用。
155 82

热门文章

最新文章