【笔记3】用pandas实现矩阵数据格式的推荐算法 (基于用户的协同)

简介:

原书作者使用字典dict实现推荐算法,并且惊叹于18行代码实现了向量的余弦夹角公式。

我用pandas实现相同的公式只要3行。

特别说明:本篇笔记是针对矩阵数据,下篇笔记是针对条目数据。

'''
基于用户的协同推荐

矩阵数据
'''

import pandas as pd
from io import StringIO
import json

#数据类型一:csv矩阵(用户-商品)(适用于小数据量)
csv_txt = '''"user","Blues Traveler","Broken Bells","Deadmau5","Norah Jones","Phoenix","Slightly Stoopid","The Strokes","Vampire Weekend"
"Angelica",3.5,2.0,,4.5,5.0,1.5,2.5,2.0
"Bill",2.0,3.5,4.0,,2.0,3.5,,3.0
"Chan",5.0,1.0,1.0,3.0,5,1.0,,
"Dan",3.0,4.0,4.5,,3.0,4.5,4.0,2.0
"Hailey",,4.0,1.0,4.0,,,4.0,1.0
"Jordyn",,4.5,4.0,5.0,5.0,4.5,4.0,4.0
"Sam",5.0,2.0,,3.0,5.0,4.0,5.0,
"Veronica",3.0,,,5.0,4.0,2.5,3.0,'''


#数据类型二:json数据(用户、商品、打分)
json_txt = '''{"Angelica": {"Blues Traveler": 3.5, "Broken Bells": 2.0,
                      "Norah Jones": 4.5, "Phoenix": 5.0,
                      "Slightly Stoopid": 1.5,
                      "The Strokes": 2.5, "Vampire Weekend": 2.0},
         
         "Bill":{"Blues Traveler": 2.0, "Broken Bells": 3.5,
                 "Deadmau5": 4.0, "Phoenix": 2.0,
                 "Slightly Stoopid": 3.5, "Vampire Weekend": 3.0},
         
         "Chan": {"Blues Traveler": 5.0, "Broken Bells": 1.0,
                  "Deadmau5": 1.0, "Norah Jones": 3.0, "Phoenix": 5,
                  "Slightly Stoopid": 1.0},
         
         "Dan": {"Blues Traveler": 3.0, "Broken Bells": 4.0,
                 "Deadmau5": 4.5, "Phoenix": 3.0,
                 "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                 "Vampire Weekend": 2.0},
         
         "Hailey": {"Broken Bells": 4.0, "Deadmau5": 1.0,
                    "Norah Jones": 4.0, "The Strokes": 4.0,
                    "Vampire Weekend": 1.0},
         
         "Jordyn":  {"Broken Bells": 4.5, "Deadmau5": 4.0,
                     "Norah Jones": 5.0, "Phoenix": 5.0,
                     "Slightly Stoopid": 4.5, "The Strokes": 4.0,
                     "Vampire Weekend": 4.0},
         
         "Sam": {"Blues Traveler": 5.0, "Broken Bells": 2.0,
                 "Norah Jones": 3.0, "Phoenix": 5.0,
                 "Slightly Stoopid": 4.0, "The Strokes": 5.0},
         
         "Veronica": {"Blues Traveler": 3.0, "Norah Jones": 5.0,
                      "Phoenix": 4.0, "Slightly Stoopid": 2.5,
                      "The Strokes": 3.0}
}'''


df = None

#方式一:加载csv数据
def load_csv_txt():
    global df
    df = pd.read_csv(StringIO(csv_txt), header=0, index_col="user")

#方式二:加载json数据(把json读成矩阵)
def load_json_txt():
    global df
    df = pd.read_json(json_txt, orient='index')
    
    
#测试:读取数据
load_csv_txt()
#load_json_txt()



def build_xy(user_name1, user_name2):
    #df2 = df.ix[[user_name1, user_name2]].dropna(axis=1)
    #return df2.ix[user_name1], df2.ix[user_name2]
    
    bool_array = df.ix[user_name1].notnull() & df.ix[user_name2].notnull()
    return df.ix[user_name1, bool_array], df.ix[user_name2, bool_array]


#曼哈顿距离
def manhattan(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    return sum(abs(x - y))
    
#欧几里德距离
def euclidean(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    return sum((x - y)**2)**0.5
    
#闵可夫斯基距离
def minkowski(user_name1, user_name2, r):
    x, y = build_xy(user_name1, user_name2)
    return sum(abs(x - y)**r)**(1/r)
    
#皮尔逊相关系数
def pearson(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    mean1, mean2 = x.mean(), y.mean()
    #分母
    denominator = (sum((x-mean1)**2)*sum((y-mean2)**2))**0.5
    return [sum((x-mean1)*(y-mean2))/denominator, 0][denominator == 0]
    

#余弦相似度(数据的稀疏性问题,在文本挖掘中应用得较多)
def cosine(user_name1, user_name2):
    x, y = build_xy(user_name1, user_name2)
    #分母
    denominator = (sum(x*x)*sum(y*y))**0.5
    return [sum(x*y)/denominator, 0][denominator == 0]

metric_funcs = {
    'manhattan': manhattan,
    'euclidean': euclidean,
    'minkowski': minkowski,
    'pearson': pearson,
    'cosine': cosine
}

#df.ix[["Angelica","Bill"]].dropna(axis=1)
print(manhattan("Angelica","Bill"))

#计算最近的邻居
def computeNearestNeighbor(user_name, metric='pearson', k=3, r=2):
    '''
    metric: 度量函数
    k:      返回k个邻居
    r:      闵可夫斯基距离专用
    
    返回:pd.Series,其中index是邻居名称,values是距离
    '''
    if metric in ['manhattan', 'euclidean']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name,)).nsmallest(k)
    elif metric in ['minkowski']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name, r,)).nsmallest(k)
    elif metric in ['pearson', 'cosine']:
        return df.drop(user_name).index.to_series().apply(metric_funcs[metric], args=(user_name,)).nlargest(k)
    
print(computeNearestNeighbor('Hailey', metric='pearson'))

#向给定用户推荐(返回:pd.Series)
def recommend(user_name):
    # 找到距离最近的用户名
    nearest_username = computeNearestNeighbor(user_name).index[0]
    
    # 找出邻居评价过、但自己未曾评价的乐队(或商品)
    # 结果:index是商品名称,values是评分
    return df.ix[nearest_username, df.ix[user_name].isnull() & df.ix[nearest_username].notnull()].sort_values()


#为Hailey做推荐
print(recommend('Hailey'))




#向给定用户推荐
def recommend2(user_name, metric='pearson', k=3, n=5, r=2):
    '''
    metric: 度量函数
    k:      根据k个最近邻居,协同推荐
    r:      闵可夫斯基距离专用
    n:      推荐的商品数目
    
    返回:pd.Series,其中index是商品名称,values是加权评分
    '''
    # 找到距离最近的k个邻居
    nearest_neighbors = computeNearestNeighbor(user_name, metric='pearson', k=k, r=r)
    
    # 计算权值
    if metric in ['manhattan', 'euclidean', 'minkowski']: # 距离越小,越类似
        nearest_neighbors = 1 / nearest_neighbors # 所以,取倒数(或者别的减函数,如:y=2**-x)
    elif metric in ['pearson', 'cosine']:                 # 距离越大,越类似
        pass
        
    nearest_neighbors = nearest_neighbors / nearest_neighbors.sum() #已经变为权值(pd.Series)
    
    # 逐个邻居找出其评价过、但自己未曾评价的乐队(或商品)的评分,并乘以权值
    neighbors_rate_with_weight = []
    for neighbor_name in nearest_neighbors.index:
        # 每个结果:pd.Series,其中index是商品名称,values是评分(已乘权值)
        neighbors_rate_with_weight.append(df.ix[neighbor_name, df.ix[user_name].isnull() & df.ix[neighbor_name].notnull()] * nearest_neighbors[neighbor_name])

    # 把邻居们的加权评分拼接成pd.DataFrame,按列累加,取最大的前n个商品的评分
    return pd.concat(neighbors_rate_with_weight, axis=1).sum(axis=1, skipna=True).nlargest(n)
    

#为Hailey做推荐
print(recommend2('Hailey', metric='manhattan', k=3, n=5))

#为Hailey做推荐
print(recommend2('Hailey', metric='euclidean', k=3, n=5, r=2))

#为Hailey做推荐
print(recommend2('Hailey', metric='pearson', k=1, n=5))
本文转自罗兵博客园博客,原文链接:http://www.cnblogs.com/hhh5460/p/6121839.html ,如需转载请自行联系原作者
相关文章
|
1月前
|
算法 搜索推荐 Java
数据结构与算法(Java篇)笔记--希尔排序
数据结构与算法(Java篇)笔记--希尔排序
|
1月前
|
机器学习/深度学习 存储 算法
【算法沉淀】刷题笔记:并查集 带权并查集+实战讲解
【算法沉淀】刷题笔记:并查集 带权并查集+实战讲解
|
2月前
|
算法 测试技术 C++
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
|
2月前
|
算法 Java C语言
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-48 算法训练 关联矩阵
第十四届蓝桥杯集训——练习解题阶段(无序阶段)-ALGO-48 算法训练 关联矩阵
37 0
|
3月前
|
算法 测试技术 C#
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
【动态规划】【矩阵快速幂】【滚动向量】C++算法552. 学生出勤记录 II
|
3月前
|
搜索推荐
排序算法笔记
排序算法笔记
23 0
|
4月前
|
算法 测试技术 编译器
【算法 | 实验18】在字符矩阵中查找给定字符串的所有匹配项
题目描述 题目 在字符矩阵中查找给定字符串的所有匹配项 给定一个M×N字符矩阵,以及一个字符串S,找到在矩阵中所有可能的连续字符组成的S的次数。所谓的连续字符,是指一个字符可以和位于其上下左右,左上左下,右上右下8个方向的字符组成字符串。用回溯法求解。
32 1
|
1月前
|
算法 搜索推荐 Java
数据结构与算法(Java篇)笔记--快速排序
数据结构与算法(Java篇)笔记--快速排序
|
1月前
|
机器学习/深度学习 算法 搜索推荐
数据结构与算法(Java篇)笔记--归并排序
数据结构与算法(Java篇)笔记--归并排序
|
2月前
|
存储 搜索推荐 算法
【排序】软考笔记:简要回顾下常见的几种排序算法
【排序】软考笔记:简要回顾下常见的几种排序算法
37 0
【排序】软考笔记:简要回顾下常见的几种排序算法