LSTM入门学习——本质上就是比RNN的隐藏层公式稍微复杂了一点点而已

简介:

LSTM入门学习

摘自:http://blog.csdn.net/hjimce/article/details/51234311

下面先给出LSTM的网络结构图:

看到网络结构图好像很复杂的样子,其实不然,LSTM的网络结构图无非是为了显示其高大上而已,这其实也是一个稍微比RNN难那么一丁点的算法。为了简单起见,下面我将直接先采用公式进行讲解LSTM,省得看见LSTM网络结构图就头晕。

(1)RNN回顾

     先简单回顾一下RNN隐层神经元计算公式为:

其中U、W是网络模型的参数,f(.)表示激活函数。RNN隐层神经元的计算由t时刻输入xt,t-1时刻隐层神经元激活值st-1作为输入。总之说白了RNN的核心计算公式就只有上面这么简简单单的公式,所以说会者不难,难者不会,对于已经懂得RNN的人来说,RNN是一个非常简单的网络模型。

(2)LSTM前向传导

     相比于RNN来说,LSTM隐层神经元的计算公式稍微复杂一点,LSTM隐藏层前向传导由下面六个计算公式组成,而且其中前4个公式跟上面RNN公式都非常相似:


首先需要先记住上面五个公式中输入变量的含义:

(1)输入变量:x(t)表示t时刻网络的输入数据,S(t-1)表示t-1时刻隐藏层神经元的激活值、C是一个记忆单元

(2)网络参数:U、W都是网络LSTM模型的参数,或者称之为权值矩阵

(3)σ表示sigmoid激活函数

(4)另外s(t)是t时刻,LSTM隐藏层的激活值

     从上面的公式我们可以看出LSTM在t时刻的输入包含:X(t)、S(t-1)、C(t-1),输出就是t时刻隐层神经元激活值S(t)。LSTM前四个公式和RNN非常相似,模型都是:

这四个公式的输入都是x(t),s(t-1),每个公式各有各自的参数U、W。前面三个公式的激活函数选择s型函数,大牛门给它们起了一个非常装逼的名词,i、f、o分别称之为输入门、遗忘门、输出门;第4个公式选用tanh激活函数。

1、输入门

输入门可以控制你的输入是否影响你的记忆当中的内容。因变量为i,自变量为:输入数据x(t)、上一时刻隐藏层神经元激活值s(t-1),其采用S激活函数,输出的数值在0~1之间。如果从业余的角度来讲,可以把它看成是一个权值;当i为0的时候,表示当前时刻x(t)的信息被屏蔽,没有存储到记忆中。

2、遗忘门

遗忘门是来看你的记忆是否自我更新保持下去。因变量为f,自变量依旧为:

3、输出门

输出门是影响你的记忆是否被输出出来影响将来这三个们有一个特点:它们的输入数据都是x(t),上一时刻隐藏层的激活值s(t-1),另外这三个们

这种方式使你的记忆得到灵活的保持,而控制记忆如何保持的这些门本身是通过学习得到的,通过不同的任务学习如何去控制这些门。

三、源码实现

https://github.com/fchollet/keras/blob/master/keras/layers/recurrent.py

 

[python]  view plain  copy
 
    1.     x_i = K.dot(x * B_W[0], self.W_i) + self.b_i  
    2.     x_f = K.dot(x * B_W[1], self.W_f) + self.b_f  
    3.     x_c = K.dot(x * B_W[2], self.W_c) + self.b_c  
    4.     x_o = K.dot(x * B_W[3], self.W_o) + self.b_o  
    5.   
    6. i = self.inner_activation(x_i + K.dot(h_tm1 * B_U[0], self.U_i))  
    7. f = self.inner_activation(x_f + K.dot(h_tm1 * B_U[1], self.U_f))  
    8. c = f * c_tm1 + i * self.activation(x_c + K.dot(h_tm1 * B_U[2], self.U_c))  
    9. o = self.inner_activation(x_o + K.dot(h_tm1 * B_U[3], self.U_o))  
    10.   
    11. h = o * self.activation(c)  






















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7714843.html ,如需转载请自行联系原作者

相关文章
|
机器学习/深度学习 计算机视觉
用实验数据验证面试题:VGG使用3x3卷积核的优势
用实验数据验证面试题:VGG使用3x3卷积核的优势
393 0
用实验数据验证面试题:VGG使用3x3卷积核的优势
|
24天前
|
机器学习/深度学习 算法
大模型开发:解释反向传播算法是如何工作的。
反向传播算法是训练神经网络的常用方法,尤其适用于多层前馈网络。它包括前向传播、计算损失、反向传播和迭代过程。首先,输入数据通过网络层层传递至输出层,计算预测值。接着,比较实际输出与期望值,计算损失。然后,从输出层开始,利用链式法则反向计算误差和权重的梯度。通过梯度下降等优化算法更新权重和偏置,以降低损失。此过程反复进行,直到损失收敛或达到预设训练轮数,优化模型性能,实现对新数据的良好泛化。
|
4月前
|
机器学习/深度学习 算法 PyTorch
手把手教你搭建一个深度网络模型:从输入层-激活函数-损失函数-优化方法-输出层-执行训练
我这几天遇到一个不错的范例,将的是一层一层教我们搭建一个神经网络,其实很多我接触过的伙伴对修改模型架构这块还是头疼。其实我么可以从简单的神经网络层开始,自己DIY每一层,对上手修改架构有帮助。这里用的是paddle框架,当然玩pytorch的朋友也别急着关掉,因为我这几天刷到的pytorch感觉和飞桨的这块几乎是非常相似。只是有点点表达不一样,其他都完全一样。甚至连编程习惯都非常一样。下面是来自PaddlePaddle FLuid深度学习入门与实战一书的案例。
109 0
|
机器学习/深度学习 算法
LSTM最通俗的解释
LSTM最通俗的解释
|
机器学习/深度学习 算法 BI
|
机器学习/深度学习 算法
用有趣的方式解释梯度下降算法
用有趣的方式解释梯度下降算法
用有趣的方式解释梯度下降算法
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch基于迁移学习的VGG卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕VGG神经网络的注释 两个基本一样 只是这个网络是迁移过来的
Pytorch基于迁移学习的VGG卷积神经网络-手撕(可直接运行)-部分地方不懂的可以参考我上一篇手撕VGG神经网络的注释 两个基本一样 只是这个网络是迁移过来的
|
机器学习/深度学习 算法
BP神经网络(算法整体思路及原理+手写公式推导)
BP神经网络(算法整体思路及原理+手写公式推导)
172 0
BP神经网络(算法整体思路及原理+手写公式推导)
|
机器学习/深度学习 算法
通俗解释优化的线性感知机算法:Pocket PLA
通俗解释优化的线性感知机算法:Pocket PLA
272 0
通俗解释优化的线性感知机算法:Pocket PLA