Java Thread 多线程同步、锁、通信

简介:

线程同步、同步锁、死锁

线程通信

线程组和未处理异常

Callable和Future

12、线程同步
    当多个线程访问同一个数据时,非常容易出现线程安全问题。这时候就需要用线程同步
    Case:银行取钱问题,有以下步骤:
    A、用户输入账户、密码,系统判断是否登录成功
    B、用户输入取款金额
    C、系统判断取款金额是否大于现有金额
    D、如果金额大于取款金额,就成功,否则提示小于余额
 
    现在模拟2个人同时对一个账户取款,多线程操作就会出现问题。这时候需要同步才行;
    同步代码块:
    synchronized (object) {
        //同步代码
    }
    Java多线程支持方法同步,方法同步只需用用synchronized来修饰方法即可,那么这个方法就是同步方法了。
    对于同步方法而言,无需显示指定同步监视器,同步方法监视器就是本身this
    同步方法:
    public synchronized void editByThread() {
        //doSomething
    }
 
    需要用同步方法的类具有以下特征:
    A、该类的对象可以被多个线程访问
    B、每个线程调用对象的任意都可以正常的结束,返回正常结果
    C、每个线程调用对象的任意方法后,该对象状态保持合理状态
    不可变类总是线程安全的,因为它的对象状态是不可改变的,但可变类对象需要额外的方法来保证线程安全。
    例如Account就是一个可变类,它的money就是可变的,当2个线程同时修改money时,程序就会出现异常或错误。
    所以要对Account设置为线程安全的,那么就需要用到同步synchronized关键字。
    
    
    下面的方法用synchronized同步关键字修饰,那么这个方法就是一个同步的方法。这样就只能有一个线程可以访问这个方法,
    在当前线程调用这个方法时,此方法是被锁状态,同步监视器是this。只有当此方法修改完毕后其他线程才能调用此方法。
    这样就可以保证线程的安全,处理多线程并发取钱的的安全问题。
    public synchronized void drawMoney(double money) {
        //取钱操作
    }
    注意:synchronized可以修饰方法、代码块,但不能修饰属性、构造方法
    
    可变类的线程安全是以降低程序的运行效率为代价,为了减少线程安全所带来的负面影响,可以采用以下策略:
    A、不要对线程安全类的所有方法都采用同步模式,只对那些会改变竞争资源(共享资源)的方法进行同步。
    B、如果可变类有2中运行环境:单线程环境和多线程环境,则应该为该可变提供2种版本;线程安全的和非线程安全的版本。
    在单线程下采用非线程安全的提高运行效率保证性能,在多线程环境下采用线程安全的控制安全性问题。
    
    释放同步监视器的锁定
    任何线程进入同步代码块、同步方法之前,必须先获得对同步监视器的锁定,那么何时会释放对同步监视器锁定?
    程序无法显示的释放对同步监视器的锁定,线程可以通过以下方式释放锁定:
    A、当线程的同步方法、同步代码库执行结束,就可以释放同步监视器
    B、当线程在同步代码库、方法中遇到break、return终止代码的运行,也可释放
    C、当线程在同步代码库、同步方法中遇到未处理的Error、Exception,导致该代码结束也可释放同步监视器
    D、当线程在同步代码库、同步方法中,程序执行了同步监视器对象的wait方法,导致方法暂停,释放同步监视器
 
    下面情况不会释放同步监视器:
    A、当线程在执行同步代码库、同步方法时,程序调用了Thread.sleep()/Thread.yield()方法来暂停当前程序,当前程序不会释放同步监视器
    B、当线程在执行同步代码库、同步方法时,其他线程调用了该线程的suspend方法将该线程挂起,该线程不会释放同步监视器。注意尽量避免使用suspend、resume
    
    同步锁(Lock)
    通常认为:Lock提供了比synchronized方法和synchronized代码块更广泛的锁定操作,Lock更灵活的结构,有很大的差别,并且可以支持多个Condition对象
    Lock是控制多个线程对共享资源进行访问的工具。通常,锁提供了对共享资源的独占访问,每次只能有一个线程对Lock对象加锁,
    线程开始访问共享资源之前应先获得Lock对象。不过某些锁支持共享资源的并发访问,如:ReadWriteLock(读写锁),在线程安全控制中,
    通常使用ReentrantLock(可重入锁)。使用该Lock对象可以显示加锁、释放锁。
     
    class C {
        //锁对象
        private final ReentrantLock lock = new ReentrantLock();
        ......
        //保证线程安全方法
        public void method() {
            //上锁
            lock.lock();
            try {
                //保证线程安全操作代码
            } catch() {
            
            } finally {
                lock.unlock();//释放锁
            }
        }
    }
    使用Lock对象进行同步时,锁定和释放锁时注意把释放锁放在finally中保证一定能够执行。
    
    使用锁和使用同步很类似,只是使用Lock时显示的调用lock方法来同步。而使用同步方法synchronized时系统会隐式使用当前对象作为同步监视器,
    同样都是“加锁->访问->释放锁”的操作模式,都可以保证只能有一个线程操作资源。
    同步方法和同步代码块使用与竞争资源相关的、隐式的同步监视器,并且强制要求加锁和释放锁要出现在一个块结构中,而且获得多个锁时,
    它们必须以相反的顺序释放,且必须在与所有锁被获取时相同的范围内释放所有资源。
    Lock提供了同步方法和同步代码库没有的其他功能,包括用于非块结构的tryLock方法,已经试图获取可中断锁lockInterruptibly()方法,
    还有获取超时失效锁的tryLock(long, timeUnit)方法。
    ReentrantLock具有重入性,也就是说线程可以对它已经加锁的ReentrantLock再次加锁,ReentrantLock对象会维持一个计数器来追踪lock方法的嵌套调用,
    线程在每次调用lock()加锁后,必须显示的调用unlock()来释放锁,所以一段被保护的代码可以调用另一个被相同锁保护的方法。
    
    死锁
    当2个线程相互等待对方是否同步监视器时就会发生死锁,JVM没有采取处理死锁的措施,这需要我们自己处理或避免死锁。
    一旦死锁,整个程序既不会出现异常,也不会出现错误和提示,只是线程将处于阻塞状态,无法继续。
    主线程保持对Foo的锁定,等待对Bar对象加锁,而副线程却对Bar对象保持锁定,等待对Foo加锁2条线程相互等待对方先释放锁,进入死锁状态。
    由于Thread类的suspend也很容易导致死锁,所以Java不推荐使用此方法暂停线程。
 
13、线程通信
    (1)、线程的协调运行
        场景:用2个线程,这2个线程分别代表存款和取款。——现在系统要求存款者和取款者不断重复的存款和取款的动作,
        而且每当存款者将钱存入账户后,取款者立即取出这笔钱。不允许2次连续存款、2次连续取款。
        实现上述场景需要用到Object类,提供的wait、notify和notifyAll三个方法,这3个方法并不属于Thread类。但这3个方法必须由同步监视器调用,可分为2种情况:
        A、对于使用synchronized修饰的同步方法,因为该类的默认实例this就是同步监视器,所以可以在同步中直接调用这3个方法。
        B、对于使用synchronized修改的同步代码块,同步监视器是synchronized后可括号中的对象,所以必须使用括号中的对象调用这3个方法
        方法概述:
        一、wait方法:导致当前线程进入等待,直到其他线程调用该同步监视器的notify方法或notifyAll方法来唤醒该线程。
                wait方法有3中形式:无参数的wait方法,会一直等待,直到其他线程通知;带毫秒参数的wait和微妙参数的wait,
                这2种形式都是等待时间到达后苏醒。调用wait方法的当前线程会释放对该对象同步监视器的锁定。
        二、notify:唤醒在此同步监视器上等待的单个线程。如果所有线程都在此同步监视器上等待,则会随机选择唤醒其中一个线程。
            只有当前线程放弃对该同步监视器的锁定后(用wait方法),才可以执行被唤醒的线程。
        三、notifyAll:唤醒在此同步监视器上等待的所有线程。只有当前线程放弃对该同步监视器的锁定后,才能执行唤醒的线程。
    (2)、条件变量控制协调
        如果程序不使用synchronized关键字来保证同步,而是直接使用Lock对象来保证同步,则系统中不存在隐式的同步监视器对象,
        也不能使用wait、notify、notifyAll方法来协调进程的运行。
        当使用Lock对象同步,Java提供一个Condition类来保持协调,使用Condition可以让那些已经得到Lock对象却无法组合使用,
        为每个对象提供了多个等待集(wait-set),这种情况下,Lock替代了同步方法和同步代码块,Condition替代同步监视器的功能。
        Condition实例实质上被绑定在一个Lock对象上,要获得特定的Lock实例的Condition实例,调用Lock对象的newCondition即可。
        Condition类方法介绍:
        一、await:类似于隐式同步监视器上的wait方法,导致当前程序等待,直到其他线程调用Condition的signal方法和signalAll方法来唤醒该线程。
            该await方法有跟多获取变体:long awaitNanos(long nanosTimeout),void awaitUninterruptibly()、awaitUntil(Date daadline)
        二、signal:唤醒在此Lock对象上等待的单个线程,如果所有的线程都在该Lock对象上等待,则会选择随机唤醒其中一个线程。
            只有当前线程放弃对该Lock对象的锁定后,使用await方法,才可以唤醒在执行的线程。
        三、signalAll:唤醒在此Lock对象上等待的所有线程。只有当前线程放弃对该Lock对象的锁定后,才可以执行被唤醒的线程。
     
    (3)、使用管道流
        线程通信使用管道流,管道流有3种形式:
        PipedInputStream、PipedOutputStream、PipedReader和PipedWriter以及Pipe.SinkChannel和Pipe.SourceChannel,
        它们分别是管道流的字节流、管道字符流和新IO的管道Channel。
        管道流通信基本步骤:
        A、使用new操作法来创建管道输入、输出流
        B、使用管道输入流、输出流的connect方法把2个输入、输出流连接起来
        C、将管道输入、输出流分别传入2个线程
        D、2个线程可以分别依赖各自的管道输入流、管道输出流进行通信
    
14、线程组和未处理异常
    ThreadGroup表示线程组,它可以表示一批线程进行分类管理,Java允许程序对
    Java允许直接对线程组控制,对线程组控制相对于同时控制这批线程。用户创建的所有线程都属于指定的线程组。
    如果程序没有值得线程属于哪个组,那这个线程就属于默认线程组。在默认情况下,子线程和创建它父线程属于同一组。
    一旦某个线程加入了指定线程组之后,该线程将属于该线程组,直到该线程死亡,线程运行中途不能改变它所属的线程组。
    Thread类提供一些构造设置线程所属的哪个组,具有以下方法:
    A、Thread(ThreadGroup group, Runnable target):target的run方法作为线程执行体创建新线程,属于group线程组
    B、Thread(ThreadGroup group, Runnalbe target, String name):target的run方法作为线程执行体创建的新线程,该线程属于group线程组,且线程名为name
    C、Thread(ThreadGroup group, String name):创建新线程,新线程名为name,属于group组
 
    因为中途不能改变线程所属的组,所以Thread提供ThreadGroup的setter方法,但提供了getThreadGroup方法来返回该线程所属的线程组,
    getThreadGroup方法的返回值是ThreadGroup对象的表示,表示一个线程组。
    ThreadGroup有2个构造形式:
    A、ThreadGroup(String name):name线程组的名称
    B、ThreadGroup(ThreadGroup parent, String name):指定名称、指定父线程组创建的一个新线程组
 
    上面的构造都指定线程名称,也就是线程组都必须有自己的一个名称,可以通过调用ThreadGroup的getName方法得到,
    但不允许中途改变名称。ThreadGroup有以下常用的方法:
    A、activeCount:返回线程组活动线程数目
    B、interrupt:中断此线程组中的所有线程
    C、isDeamon:判断该线程是否在后台运行
    D、setDeamon:把该线程组设置为后台线程组,后台线程具有一个特征,当后台线程的最后一个线程执行结束或最后一个线程被销毁,后台线程组自动销毁。
    E、setMaxPriority:设置线程组最高优先级
    uncaughtException(Thread t, Throwable e)该方法可以处理该线程组内的线程所抛出的未处理的异常,
    Thread.UncaughtExceptionHandler是Thread类的一个内部公共静态接口,
    该接口内只有一个方法:void uncaughtException(Thread t, Throwable e) 该方法中的t代表出现异常的线程,而e代表该线程抛出的异常
     
    Thread类中提供2个方法来设置异常处理器:
    A、staticsetDefaultUnaughtExceptionHandler(Thread.UncaughtExceptionHandler eh):为该线程类的所有线程实例设置默认的异常处理器
    B、setUncaughtExceptionHandler(Thread.UncaughtExceptionHander eh):为指导线程实例设置异常处理器
 
    ThreadGroup实现了Thread.UncaughtExceptionHandler接口,所以每个线程所属的线程组将会作为默认的异常处理器。当一个线程抛出未处理异常时,
    JVM会首先查找该异常对应的异常处理器,(setUncaughtExceptionHandler设置异常处理器),如果找到该异常处理器,将调用该异常处理器处理异常。
    否则,JVM将会调用该线程的所属线程组的uncaughtException处理异常,线程组处理异常流程如下:
    A、如果该线程有父线程组,则调用父线程组的uncaughtException方法来处理异常
    B、如果该线程实例所属的线程类有默认的异常处理器(setDefaultUnaughtExceptionHandler方法设置异常处理器),那就调用该异常处理器来处理异常信息
    C、将异常调用栈的信息打印到System.err错误输出流,并结束该线程
 
15、Callable和Future
    Callable接口定义了一个call方法可以作为线程的执行体,但call方法比run方法更强大:
    A、call方法可以有返回值
    B、call方法可以申明抛出异常
 
    Callable接口是JDK5后新增的接口,而且不是Runnable的子接口,所以Callable对象不能直接作为Thread的target。而且call方法还有一个返回值,
    call方法不能直接调用,它作为线程的执行体被调用。那么如何接收call方法的返回值?
    JDK1.5提供了Future接口来代表Callable接口里的call方法的返回值,并为Future接口提供了一个FutureTask实现类,该实现类实现Future接口,
    并实现了Runnable接口—可以作为Thread的target。
 
    Future接口里定义了如下几个公共方法控制他关联的Callable任务:
    A、boolean cancel(Boolean mayInterruptlfRunning):试图取消该Future里关联的Callable任务
    B、V get():返回Callable任务里的call方法的返回值,调用该方法将导致线程阻塞,必须等到子线程结束才得到返回值
    C、V get(long timeout, TimeUnit unit):返回Callable任务里的call方法的返回值,该方法让程序最多阻塞timeout和unit指定的时间。
        如果经过指定时间后Callable任务依然没有返回值,将会抛出TimeoutException。
    D、boolean isCancelled:如果在Callable任务正常完成前被取消,则返回true。
    E、boolean isDone:如果Callable任务已经完成,则返回true
 
    创建、并启动有返回值的线程的步骤如下:
    一、创建Callable接口的实现类,并实现call方法,该call方法的返回值,并作为线程的执行体。
    二、创建Callable实现类的实例,使用FutureTask类来包装Callable对象,该FutureTask对象封装了该Callable对象的call方法的返回值
    三、使用FutureTask对象作为Thread对象的target创建、并启动新线程
    四、调用FutureTask对象的方法来获得子线程执行结束后的返回值
    





本文转自hoojo博客园博客,原文链接:http://www.cnblogs.com/hoojo/archive/2011/05/05/2038101.html,如需转载请自行联系原作者
目录
相关文章
|
6天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
7天前
|
安全 Java 开发者
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第9天】本文将深入探讨Java并发编程的核心概念,包括线程安全和性能优化。我们将详细解析Java中的同步机制,包括synchronized关键字、Lock接口以及并发集合等,并探讨它们如何影响程序的性能。此外,我们还将讨论Java内存模型,以及它如何影响并发程序的行为。最后,我们将提供一些实用的并发编程技巧和最佳实践,帮助开发者编写出既线程安全又高效的Java程序。
20 3
|
6天前
|
算法 Java 开发者
Java中的多线程编程:概念、实现与性能优化
【4月更文挑战第9天】在Java编程中,多线程是一种强大的工具,它允许开发者创建并发执行的程序,提高系统的响应性和吞吐量。本文将深入探讨Java多线程的核心概念,包括线程的生命周期、线程同步机制以及线程池的使用。接着,我们将展示如何通过继承Thread类和实现Runnable接口来创建线程,并讨论各自的优缺点。此外,文章还将介绍高级主题,如死锁的预防、避免和检测,以及如何使用并发集合和原子变量来提高多线程程序的性能和安全性。最后,我们将提供一些实用的性能优化技巧,帮助开发者编写出更高效、更稳定的多线程应用程序。
|
4天前
|
安全 算法 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第11天】 在Java中,高效的并发编程是提升应用性能和响应能力的关键。本文将探讨Java并发的核心概念,包括线程安全、锁机制、线程池以及并发集合等,同时提供实用的编程技巧和最佳实践,帮助开发者在保证线程安全的前提下,优化程序性能。我们将通过分析常见的并发问题,如竞态条件、死锁,以及如何利用现代Java并发工具来避免这些问题,从而构建更加健壮和高效的多线程应用程序。
|
20小时前
|
设计模式 运维 安全
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第15天】在Java开发中,多线程编程是提升应用程序性能和响应能力的关键手段。然而,它伴随着诸多挑战,尤其是在保证线程安全的同时如何避免性能瓶颈。本文将探讨Java并发编程的核心概念,包括同步机制、锁优化、线程池使用以及并发集合等,旨在为开发者提供实用的线程安全策略和性能优化技巧。通过实例分析和最佳实践的分享,我们的目标是帮助读者构建既高效又可靠的多线程应用。
|
2天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
3天前
|
Java
探秘jstack:解决Java应用线程问题的利器
探秘jstack:解决Java应用线程问题的利器
14 1
探秘jstack:解决Java应用线程问题的利器
|
3天前
|
Java 调度 开发者
Java 21时代的标志:虚拟线程带来的并发编程新境界
Java 21时代的标志:虚拟线程带来的并发编程新境界
14 0
|
6天前
|
监控 安全 Java
深入理解Java并发编程:线程安全与性能优化
【4月更文挑战第10天】 在Java开发中,并发编程是提升应用性能和响应能力的关键手段。然而,线程安全问题和性能调优常常成为开发者面临的挑战。本文将通过分析Java并发模型的核心原理,探讨如何平衡线程安全与系统性能。我们将介绍关键的同步机制,包括synchronized关键字、显式锁(Lock)以及并发集合等,并讨论它们在不同场景下的优势与局限。同时,文章将提供实用的代码示例和性能测试方法,帮助开发者在保证线程安全的前提下,实现高效的并发处理。
|
6天前
|
存储 安全 Java
java多线程之原子操作类
java多线程之原子操作类