射线与平面的相交检测(Ray-Plane intersection test)

  1. 云栖社区>
  2. 博客>
  3. 正文

射线与平面的相交检测(Ray-Plane intersection test)

吞吞吐吐的 2017-10-18 11:19:00 浏览1426
展开阅读全文

射线的定义

在欧几里德几何中,射线的定义是:直线上一点和它一旁的部分。由此可知,射线有两个性质,一是只有一个端点,二是一端无限延伸。

射线的参数方程

2011021710145872.png

其中p0是射线的起点, u是射线的方向向量,t >= 0,根据t的取值不同,可得射线上不同的点,所有这些点便构成了整个射线,如图o_ray.JPG

平面的定义

平面可以由法向量和平面内的一点来确定,因为过一点,有且只有一个平面与已知直线垂直

o_plane.JPG

平面的参数方程

2011021710173028.png

其中n是平面的法向量,p0是已知的平面内一点,符号表示 点积,因n与平面垂直,所以n与平面内任意直线垂直, 而(p-p0)则是平面内的一个向量,所以n (p-p0)垂直,而互相垂直的向量其点积为0,见下图

o_plane1.JPG

 

向量的点积公式
2011021710002942.png

 射线与平面的交点 

有了射线和平面的参数方程,那么求二者的交点相当于解下面的方程组

2011021709542781.png

注意这里两个方程中的p0是不同的,为区别彼此,将平面方程中的p0改为p1,并将射线方程代入平面方程,整理得到

2011021709544283.png

若t >= 0, 则射线与平面相交,且交点为p0 + tu,若t < 0,则不相交。(注意这里,n不可约去,因为做的是点积,而不是普通乘法)  



本文转自zdd博客园博客,原文链接:http://www.cnblogs.com/graphics/archive/2009/10/17/1585281.html,如需转载请自行联系原作者

网友评论

登录后评论
0/500
评论
吞吞吐吐的
+ 关注