【转】Mean shift 聚类分析

  1. 云栖社区>
  2. 博客>
  3. 正文

【转】Mean shift 聚类分析

文艺小青年 2017-11-16 15:23:00 浏览825
展开阅读全文

Mean Shift算法,一般是指一个迭代的步骤,即先算出当前点的偏移均值,移动该点到其偏移均值,然后以此为新的起始点,继续移动,直到满足一定的条件结束.

 1. Meanshift推导

给定d维空间Rd的n个样本点 ,i=1,…,n,在空间中任选一点x,那么Mean Shift向量的基本形式定义为:                             

 Sk是一个半径为h的高维球区域,满足以下关系的y点的集合,

k表示在这n个样本点xi中,有k个点落入Sk区域中.

以上是官方的说法,即书上的定义,我的理解就是,在d维空间中,任选一个点,然后以这个点为圆心,h为半径做一个高维球,因为有d维,d可能大于2,所以是高维球。落在这个球内的所有点和圆心都会产生一个向量,向量是以圆心为起点落在球内的点位终点。然后把这些向量都相加。相加的结果就是Meanshift向量

如图所以。其中黄色箭头就是Mh(meanshift向量)。

再以meanshift向量的终点为圆心,再做一个高维的球。如下图所以,重复以上步骤,就可得到一个meanshift向量。如此重复下去,meanshift算法可以收敛到概率密度最大得地方。也就是最稠密的地方。

最终的结果如下:

Meanshift推导:

 把基本的meanshift向量加入核函数,核函数的性质在这篇博客介绍:http://www.cnblogs.com/liqizhou/archive/2012/05/11/2495788.html

那么,meanshift算法变形为

                                                         (1)

解释一下K()核函数,h为半径,Ck,d/nhd  为单位密度,要使得上式f得到最大,最容易想到的就是对上式进行求导,的确meanshift就是对上式进行求导.

(2)             

令:

K(x)叫做g(x)的影子核,名字听上去听深奥的,也就是求导的负方向,那么上式可以表示

对于上式,如果才用高斯核,那么,第一项就等于fh,k

第二项就相当于一个meanshift向量的式子:

 那么(2)就可以表示为

下图分析的构成,如图所以,可以很清晰的表达其构成。

要使得=0,当且仅当=0,可以得出新的圆心坐标:

                          (3) 

 

上面介绍了meanshift的流程,但是比较散,下面具体给出它的算法流程。

  1. 选择空间中x为圆心,以h为半径为半径,做一个高维球,落在所有球内的所有点xi
  2. 计算,如果<ε(人工设定),推出程序。如果>ε, 则利用(3)计算x,返回1.

 

2.meanshift在图像上的聚类:

真正大牛的人就能创造算法,例如像meanshift,em这个样的算法,这样的创新才能推动整个学科的发展。还有的人就是把算法运用的实际的运用中,推动整个工业进步,也就是技术的进步。下面介绍meashift算法怎样运用到图像上的聚类核跟踪。

一般一个图像就是个矩阵,像素点均匀的分布在图像上,就没有点的稠密性。所以怎样来定义点的概率密度,这才是最关键的。

如果我们就算点x的概率密度,采用的方法如下:以x为圆心,以h为半径。落在球内的点位xi   定义二个模式规则。

(1)x像素点的颜色与xi像素点颜色越相近,我们定义概率密度越高。

(2)离x的位置越近的像素点xi,定义概率密度越高。

所以定义总的概率密度,是二个规则概率密度乘积的结果,可以(4)表示

(4)

其中:代表空间位置的信息,离远点越近,其值就越大,表示颜色信息,颜色越相似,其值越大。如图左上角图片,按照(4)计算的概率密度如图右上。利用meanshift对其聚类,可得到左下角的图。

 

---恢复内容结束---

本文转自编程小翁博客园博客,原文链接:http://www.cnblogs.com/wengzilin/archive/2013/05/05/3061144.html,如需转载请自行联系原作者

网友评论

登录后评论
0/500
评论
文艺小青年
+ 关注