阿里云数据库ApsaraDB 关注
手机版
  1. 云栖社区>
  2. 阿里云数据库ApsaraDB>
  3. 博客>
  4. 正文

MongoDB索引原理

yunnotes 2016-04-25 11:39:51 浏览4595 评论1 发表于: 阿里云数据库ApsaraDB

数据存储与数据库 云存储技术 MongoDB 索引优化

摘要: MongoDB索引原理 为什么需要索引? 当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql)。 mongo-9552:PRIMARY> db.person.find() { "_

MongoDB索引原理

为什么需要索引?

当你抱怨MongoDB集合查询效率低的时候,可能你就需要考虑使用索引了,为了方便后续介绍,先科普下MongoDB里的索引机制(同样适用于其他的数据库比如mysql)。

mongo-9552:PRIMARY> db.person.find()
{ "_id" : ObjectId("571b5da31b0d530a03b3ce82"), "name" : "jack", "age" : 19 }
{ "_id" : ObjectId("571b5dae1b0d530a03b3ce83"), "name" : "rose", "age" : 20 }
{ "_id" : ObjectId("571b5db81b0d530a03b3ce84"), "name" : "jack", "age" : 18 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce85"), "name" : "tony", "age" : 21 }
{ "_id" : ObjectId("571b5dc21b0d530a03b3ce86"), "name" : "adam", "age" : 18 }

当你往某各个集合插入多个文档后,每个文档在经过底层的存储引擎持久化后,会有一个位置信息,通过这个位置信息,就能从存储引擎里读出该文档。比如mmapv1引擎里,位置信息是『文件id + 文件内offset 』, 在wiredtiger存储引擎(一个KV存储引擎)里,位置信息是wiredtiger在存储文档时生成的一个key,通过这个key能访问到对应的文档;为方便介绍,统一用pos(position的缩写)来代表位置信息。

比如上面的例子里,person集合里包含插入了4个文档,假设其存储后位置信息如下(为方便描述,文档省去_id字段)

位置信息 文档
pos1 {"name" : "jack", "age" : 19 }
pos2 {"name" : "rose", "age" : 20 }
pos3 {"name" : "jack", "age" : 18 }
pos4 {"name" : "tony", "age" : 21}
pos5 {"name" : "adam", "age" : 18}

假设现在有个查询 db.person.find( {age: 18} ), 查询所有年龄为18岁的人,这时需要遍历所有的文档(『全表扫描』),根据位置信息读出文档,对比age字段是否为18。当然如果只有4个文档,全表扫描的开销并不大,但如果集合文档数量到百万、甚至千万上亿的时候,对集合进行全表扫描开销是非常大的,一个查询耗费数十秒甚至几分钟都有可能。

如果想加速 db.person.find( {age: 18} ),就可以考虑对person表的age字段建立索引

db.person.createIndex( {age: 1} )  // 按age字段创建升序索引

建立索引后,MongoDB会额外存储一份按age字段升序排序的索引数据,索引结构类似如下,索引通常采用类似btree的结构持久化存储,以保证从索引里快速(O(logN)的时间复杂度)找出某个age值对应的位置信息,然后根据位置信息就能读取出对应的文档。

age 位置信息
18 pos3
18 pos5
19 pos1
20 pos2
21 pos4

简单的说,索引就是将文档按照某个(或某些)字段顺序组织起来,以便能根据该字段高效的查询。有了索引,至少能优化如下场景的效率:

  • 查询,比如查询年龄为18的所有人
  • 更新/删除,将年龄为18的所有人的信息更新或删除,因为更新或删除时,需要根据条件先查询出所有符合条件的文档,所以本质上还是在优化查询
  • 排序,将所有人的信息按年龄排序,如果没有索引,需要全表扫描文档,然后再对扫描的结果进行排序

众所周知,MongoDB默认会为插入的文档生成_id字段(如果应用本身没有指定该字段),_id是文档唯一的标识,为了保证能根据文档id快递查询文档,MongoDB默认会为集合创建_id字段的索引。

mongo-9552:PRIMARY> db.person.getIndexes() // 查询集合的索引信息
[
    {
        "ns" : "test.person",  // 集合名
        "v" : 1,               // 索引版本
        "key" : {              // 索引的字段及排序方向
            "_id" : 1           // 根据_id字段升序索引
        },
        "name" : "_id_"        // 索引的名称
    }
]

MongoDB索引类型

MongoDB支持多种类型的索引,包括单字段索引、复合索引、多key索引、文本索引等,每种类型的索引有不同的使用场合。

单字段索引 (Single Field Index)

    db.person.createIndex( {age: 1} ) 

上述语句针对age创建了单字段索引,其能加速对age字段的各种查询请求,是最常见的索引形式,MongoDB默认创建的id索引也是这种类型。

{age: 1} 代表升序索引,也可以通过{age: -1}来指定降序索引,对于单字段索引,升序/降序效果是一样的。

复合索引 (Compound Index)

复合索引是Single Field Index的升级版本,它针对多个字段联合创建索引,先按第一个字段排序,第一个字段相同的文档按第二个字段排序,依次类推,如下针对age, name这2个字段创建一个复合索引。

    db.person.createIndex( {age: 1, name: 1} ) 

上述索引对应的数据组织类似下表,与{age: 1}索引不同的时,当age字段相同时,在根据name字段进行排序,所以pos5对应的文档排在pos3之前。

age,name 位置信息
18,adam pos5
18,jack pos3
19,jack pos1
20,rose pos2
21,tony pos4

复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如db.person.find( {age: 18, name: "jack"} ),也能满足所以能匹配符合索引前缀的查询,这里{age: 1}即为{age: 1, name: 1}的前缀,所以类似db.person.find( {age: 18} )的查询也能通过该索引来加速;但db.person.find( {name: "jack"} )则无法使用该复合索引。如果经常需要根据『name字段』以及『name和age字段组合』来查询,则应该创建如下的复合索引

db.person.createIndex( {name: 1, age: 1} ) 

除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使person集合所有的查询都是『name和age字段组合』(指定特定的name和age),字段的顺序也是有影响的。

age字段的取值很有限,即拥有相同age字段的文档会有很多;而name字段的取值则丰富很多,拥有相同name字段的文档很少;显然先按name字段查找,再在相同name的文档里查找age字段更为高效。

多key索引 (Multikey Index)

当索引的字段为数组时,创建出的索引称为多key索引,多key索引会为数组的每个元素建立一条索引,比如person表加入一个habbit字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用habbit字段的多key索引。

{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} )  // 自动创建多key索引
db.person.find( {habbit: "football"} )

其他类型索引

哈希索引(Hashed Index)是指按照某个字段的hash值来建立索引,目前主要用于MongoDB Sharded Cluster的Hash分片,hash索引只能满足字段完全匹配的查询,不能满足范围查询等。

地理位置索引(Geospatial Index)能很好的解决O2O的应用场景,比如『查找附近的美食』、『查找某个区域内的车站』等。

文本索引(Text Index)能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。

索引额外属性

MongoDB除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。

  • 唯一索引 (unique index):保证索引对应的字段不会出现相同的值,比如_id索引就是唯一索引
  • TTL索引:可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期 或 在某个时间点过期)
  • 部分索引 (partial index): 只针对符合某个特定条件的文档建立索引,3.2版本才支持该特性
  • 稀疏索引(sparse index): 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况

索引优化

db profiling

MongoDB支持对DB的请求进行profiling,目前支持3种级别的profiling。

  • 0: 不开启profiling
  • 1: 将处理时间超过某个阈值(默认100ms)的请求都记录到DB下的system.profile集合 (类似于mysql、redis的slowlog)
  • 2: 将所有的请求都记录到DB下的system.profile集合(生产环境慎用)

通常,生产环境建议使用1级别的profiling,并根据自身需求配置合理的阈值,用于监测慢请求的情况,并及时的做索引优化。

如果能在集合创建的时候就能『根据业务查询需求决定应该创建哪些索引』,当然是最佳的选择;但由于业务需求多变,要根据实际情况不断的进行优化。索引并不是越多越好,集合的索引太多,会影响写入、更新的性能,每次写入都需要更新所有索引的数据;所以你system.profile里的慢请求可能是索引建立的不够导致,也可能是索引过多导致。

查询计划

索引已经建立了,但查询还是很慢怎么破?这时就得深入的分析下索引的使用情况了,可通过查看下详细的查询计划来决定如何优化。通过执行计划可以看出如下问题

  1. 根据某个/些字段查询,但没有建立索引
  2. 根据某个/些字段查询,但建立了多个索引,执行查询时没有使用预期的索引。

建立索引前,db.person.find( {age: 18} )必须执行COLLSCAN,即全表扫描。

mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
    "queryPlanner" : {
        "plannerVersion" : 1,
        "namespace" : "test.person",
        "indexFilterSet" : false,
        "parsedQuery" : {
            "age" : {
                "$eq" : 18
            }
        },
        "winningPlan" : {
            "stage" : "COLLSCAN",
            "filter" : {
                "age" : {
                    "$eq" : 18
                }
            },
            "direction" : "forward"
        },
        "rejectedPlans" : [ ]
    },
    "serverInfo" : {
        "host" : "localhost",
        "port" : 9552,
        "version" : "3.2.3",
        "gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
    },
    "ok" : 1
}

建立索引后,通过查询计划可以看出,先进行IXSCAN(从索引中查找),然后FETCH,读取出满足条件的文档。

mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
    "queryPlanner" : {
        "plannerVersion" : 1,
        "namespace" : "test.person",
        "indexFilterSet" : false,
        "parsedQuery" : {
            "age" : {
                "$eq" : 18
            }
        },
        "winningPlan" : {
            "stage" : "FETCH",
            "inputStage" : {
                "stage" : "IXSCAN",
                "keyPattern" : {
                    "age" : 1
                },
                "indexName" : "age_1",
                "isMultiKey" : false,
                "isUnique" : false,
                "isSparse" : false,
                "isPartial" : false,
                "indexVersion" : 1,
                "direction" : "forward",
                "indexBounds" : {
                    "age" : [
                        "[18.0, 18.0]"
                    ]
                }
            }
        },
        "rejectedPlans" : [ ]
    },
    "serverInfo" : {
        "host" : "localhost",
        "port" : 9552,
        "version" : "3.2.3",
        "gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
    },
    "ok" : 1
}

参考资料

本文为云栖社区原创内容,未经允许不得转载,如需转载请发送邮件至yqeditor@list.alibaba-inc.com;如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件至:yqgroup@service.aliyun.com 进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容。

用云栖社区APP,舒服~

【云栖快讯】哪个编程语言最热门?各个专业领域的技术趋势是什么?如何才能更快速的踏上技术进阶之路……云栖社区2017中国开发者大调查火热进行!答卷可抽奖,红轴机械键盘、天猫精灵,丰富好礼大概率抽取  详情请点击

网友评论

1F
小虎上路

1、mysql的索引组织表,主键索引保存了整条记录;
2、复合索引age,name的索引中,应该同时保存了age、name和pos吧?看图示没有name

yunnotes
  1. mongo与mysql不太一样,_id索引跟其他索引类似的,根据_id指向具体的位置
  2. {age: 1, name: 1}应该的索引key应该包含age,name信息的,表中描述有误,已更新,感谢指出。
评论
关注
yunnotes
张友东,花名林青,阿里云数据库组技术专家,主要...
86篇文章|386关注
基于飞天分布式系统和高性能存储,提供三节点副本集的高可用架构,容灾切换,故障迁移完全透明化。并提供专业的数据库在...

提供海量、安全和高可靠的云存储服务。RESTful API的平台无关性,容量和处理能力的弹性扩展,按实际容量付费...

快速、完全托管的TB/PB级数据仓库解决方案,向用户提供了完善的数据导入方案以及多种经典的分布式计算模型,能够更...

为您提供简单高效、处理能力可弹性伸缩的计算服务,帮助您快速构建更稳定、安全的应用,提升运维效率,降低 IT 成本...