TF-IDF与余弦相似性的应用(二):找出相似文章

简介:


转自:http://www.ruanyifeng.com/blog/2013/03/cosine_similarity.html

上一次,我用 TF-IDF 算法自动提取关键词。

今天,我们再来研究另一个相关的问题。有些时候,除了找到关键词,我们还希望找到与原文章相似的其他文章。比如,”Google 新闻”在主新闻下方,还提供多条相似的新闻。

为了找出相似的文章,需要用到“余弦相似性”(cosine similiarity)。下面,我举一个例子来说明,什么是”余弦相似性”。

为了简单起见,我们先从句子着手。

句子A:我喜欢看电视,不喜欢看电影。

句子B:我不喜欢看电视,也不喜欢看电影。

请问怎样才能计算上面两句话的相似程度?

基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似。因此,可以从词频入手,计算它们的相似程度。

第一步,分词。

句子A:我/喜欢/看/电视,不/喜欢/看/电影。

句子B:我/不/喜欢/看/电视,也/不/喜欢/看/电影。

第二步,列出所有的词。

我,喜欢,看,电视,电影,不,也。

第三步,计算词频。

句子A:我 1,喜欢 2,看 2,电视 1,电影 1,不 1,也 0。

句子B:我 1,喜欢 2,看 2,电视 1,电影 1,不 2,也 1。

第四步,写出词频向量。

句子A:[1, 2, 2, 1, 1, 1, 0]

句子B:[1, 2, 2, 1, 1, 2, 1]

到这里,问题就变成了如何计算这两个向量的相似程度。

我们可以把它们想象成空间中的两条线段,都是从原点([0, 0, ...])出发,指向不同的方向。两条线段之间形成一个夹角,如果夹角为 0 度,意味着方向相同、线段重合;如果夹角为 90 度,意味着形成直角,方向完全不相似;如果夹角为 180 度,意味着方向正好相反。因此,我们可以通过夹角的大小,来判断向量的相似程度。夹角越小,就代表越相似。

以二维空间为例,上图的a和b是两个向量,我们要计算它们的夹角θ。余弦定理告诉我们,可以用下面的公式求得:

假定a向量是[x1, y1],b向量是[x2, y2],那么可以将余弦定理改写成下面的形式:

数学家已经证明,余弦的这种计算方法对n维向量也成立。假定A和B是两个n维向量,A是 [A1, A2, ..., An] ,B是 [B1, B2, ..., Bn] ,则A与B的夹角θ的余弦等于:

使用这个公式,我们就可以得到,句子A与句子B的夹角的余弦。

余弦值越接近1,就表明夹角越接近 0 度,也就是两个向量越相似,这就叫”余弦相似性”。所以,上面的句子A和句子B是很相似的,事实上它们的夹角大约为 20.3 度。

由此,我们就得到了”找出相似文章”的一种算法:

(1)使用 TF-IDF 算法,找出两篇文章的关键词;

(2)每篇文章各取出若干个关键词(比如 20 个),合并成一个集合,计算每篇文章对于这个集合中的词的词频(为了避免文章长度的差异,可以使用相对词频);

(3)生成两篇文章各自的词频向量;

(4)计算两个向量的余弦相似度,值越大就表示越相似。

“余弦相似度”是一种非常有用的算法,只要是计算两个向量的相似程度,都可以采用它。

下一次,我想谈谈如何在词频统计的基础上,自动生成一篇文章的摘要。


==============================================================================
本文转自被遗忘的博客园博客,原文链接:http://www.cnblogs.com/rollenholt/articles/3381647.html,如需转载请自行联系原作者
相关文章
|
4月前
|
算法
TF-IDF算法是什么呢?
TF-IDF(Term Frequency-Inverse Document Frequency)是一种常用于信息检索和文本挖掘的统计方法,用于评估一个词在文档集或一个语料库中的重要程度。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。
|
Python 机器学习/深度学习
Cross Entropy Loss 交叉熵损失函数公式推导
表达式 输出标签表示为{0,1}时,损失函数表达式为: $L = -[y log \hat{y} + (1-y)log(1- \hat{y})]$ 二分类 二分类问题,假设 y∈{0,1} 正例:$P(y = 1| x) = \hat{y}$ 反例:$P(y=0|x) = 1-\hat{y}$ 取似然函数 似然函数就是所有样本在参数θ下发生概率最大的那种情况,由于样本独立同分布,因此概率最大的情况就是每个样本发生概率的连乘。
15543 0
|
4月前
TF-IDF 怎样将用单词权重的向量表示一个文档
TF-IDF 怎样将用单词权重的向量表示一个文档
27 1
|
算法 数据挖掘 Linux
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
【文本分类】采用同义词的改进TF-IDF权重的文本分类
|
机器学习/深度学习 算法 TensorFlow
Softmax 多分类 | 学习笔记
快速学习 Softmax 多分类
144 0
Softmax 多分类 | 学习笔记
TF-IDF及相似度计算
TF-IDF:衡量某个词对文章的重要性由TF和IDF组成 TF:词频(因素:某词在同一文章中出现次数) IDF:反文档频率(因素:某词是否在不同文章中出现) TF-IDF = TF*IDF TF :一个单词在一篇文章出现次数越多越重要 IDF: 每篇文章都出现的单词(如的,你,我,他) ,越不重要
251 0
TF-IDF及相似度计算
|
算法
TF-IDF算法
TF-IDF(Term Frequency-Inverse Document Frequency, 词频-逆文件频率).
149 0
TF-IDF算法
|
搜索推荐 索引
空间向量模型和tf-idf
空间向量模型和tf-idf
291 0
空间向量模型和tf-idf
|
机器学习/深度学习 算法 测试技术
特征工程(三):特征缩放,从词袋到 TF-IDF
字袋易于生成,但远非完美。假设我们平等的统计所有单词,有些不需要的词也会被强调。在第三章提过一个例子,Emma and the raven。我们希望在文档表示中能强调两个主要角色。示例中,“Eama”和“raven”都出现了3词,但是“the”的出现高达8次,“and”出现了次,另外“it”以及“was”也都出现了4词。
3444 0
|
算法
TF-IDF
TF为"词频",IDF为"逆文档频率",将这两个值相乘,就得到了一个词的TF-IDF值。某个词对文章的重要性越高,它的TF-IDF值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。
1508 0