C# 集合-并发处理-锁OR线程

简介: 每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客!当然,希望将来的一天,某位老板看到此博客,给你的程序员职工加点薪资吧!因为程序员的世界除了苦逼就是沉默。我眼中的程序员大多都不爱说话,默默承受着编程的巨大压力,除了技术上的交流外,他们不愿意也不擅长和别人交流,更不乐意任何人走进他们的内心!    最近悟出来一个道理,在这儿分享给大家:学历代表你的过去,能力代表你的现在,学习代表你的将来。

   每次写博客,第一句话都是这样的:程序员很苦逼,除了会写程序,还得会写博客!当然,希望将来的一天,某位老板看到此博客,给你的程序员职工加点薪资吧!因为程序员的世界除了苦逼就是沉默。我眼中的程序员大多都不爱说话,默默承受着编程的巨大压力,除了技术上的交流外,他们不愿意也不擅长和别人交流,更不乐意任何人走进他们的内心!

   最近悟出来一个道理,在这儿分享给大家:学历代表你的过去,能力代表你的现在,学习代表你的将来。我们都知道计算机技术发展日新月异,速度惊人的快,你我稍不留神,就会被慢慢淘汰!因此:每日不间断的学习是避免被淘汰的不二法宝。

   当然,题外话说多了,咱进入正题!

   简单的总结下对预防并发的理解:预防并发其实就是将并行执行修改为串行执行。(关于数据库并发问题大家可参考我的博客:C# 数据库并发的解决方案(通用版、EF版)

   背景   

   C#命名空间:System.Collenctions和System.Collenctions.Generic 中提供了很多列表、集合和数组。例如:List<T>集合,数组Int[],String[] ......,Dictory<T,T>字典等等。但是这些列表、集合和数组的线程都不是安全的,不能接受并发请求。下面通过一个例子来加以说明,如下:

 class Program
    {
        private static object o = new object();
        private static List<Product> _Products { get; set; }
        /*  coder:天才卧龙  
         *  代码中 创建三个并发线程 来操作_Products 集合
         *  System.Collections.Generic.List 这个列表在多个线程访问下,不能保证是安全的线程,所以不能接受并发的请求,我们必须对ADD方法的执行进行串行化
         */
        static void Main(string[] args)
        {
            _Products = new List<Product>();
            /*创建任务 t1  t1 执行 数据集合添加操作*/
            Task t1 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t2  t2 执行 数据集合添加操作*/
            Task t2 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t3  t3 执行 数据集合添加操作*/
            Task t3 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            Task.WaitAll(t1, t2, t3);
            Console.WriteLine(_Products.Count);
            Console.ReadLine();
        }

        /*执行集合数据添加操作*/
        static void AddProducts()
        {
            Parallel.For(0, 1000, (i) =>
            {
                Product product = new Product();
                product.Name = "name" + i;
                product.Category = "Category" + i;
                product.SellPrice = i;
                _Products.Add(product);
            });

        }
    }

    class Product
    {
        public string Name { get; set; }
        public string Category { get; set; }
        public int SellPrice { get; set; }
    }

   本例中,开辟了三个线程,通过循环向集合中添加数据,每个线程执行1000次(三个线程之间的操作是同时进行的,也是并行的),那么,理论上结果应该是3000。

   上文中我们讲到: C#命名空间:System.Collenctions和System.Collenctions.Generic 下的列表,数组,集合并不能保证线程安全,并不能防止并发的发生。

   本例运行的结果也证明了上述结论的正确性,其结果如下:

   由此可见:C#命名空间:System.Collenctions和System.Collenctions.Generic 下的列表,数组,集合确实不能保证线程安全,确实不能预防并发。那么我们应当怎么解决上述问题呢?

   还好,自C#2.0以来,LOCK是一直存在的。使用LOCK(互斥锁)是可以做到防止并发的,示例代码如下:

 class Program
    {
        private static object o = new object();
        private static List<Product> _Products { get; set; }
        /*  coder:天才卧龙  
         *  代码中 创建三个并发线程 来操作_Products 集合
         *  System.Collections.Generic.List 这个列表在多个线程访问下,不能保证是安全的线程,所以不能接受并发的请求,我们必须对ADD方法的执行进行串行化
         */
        static void Main(string[] args)
        {
            _Products = new List<Product>();
            /*创建任务 t1  t1 执行 数据集合添加操作*/
            Task t1 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t2  t2 执行 数据集合添加操作*/
            Task t2 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t3  t3 执行 数据集合添加操作*/
            Task t3 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            Task.WaitAll(t1, t2, t3);
            Console.WriteLine(_Products.Count);
            Console.ReadLine();
        }

        /*执行集合数据添加操作*/
        static void AddProducts()
        {
            Parallel.For(0, 1000, (i) =>
               {
                   lock (o)
                   {

                       Product product = new Product();
                       product.Name = "name" + i;
                       product.Category = "Category" + i;
                       product.SellPrice = i;
                       _Products.Add(product);
                   }
               });
        }
    }

    class Product
    {
        public string Name { get; set; }
        public string Category { get; set; }
        public int SellPrice { get; set; }
    }

引入了Lock,运行结果也正常了,如下:

   但是锁的引入,带来了一定的开销和性能的损耗,并降低了程序的扩展性,而且还会有死锁的发生(虽说概率不大,但也不能不防啊),因此:使用LOCK进行并发编程显然不太适用。

   还好,微软一直在更新自己的东西:

   .NET Framework 4提供了新的线程安全和扩展的并发集合,它们能够解决潜在的死锁问题和竞争条件问题,因此在很多复杂的情形下它们能够使得并行代码更容易编写,这些集合尽可能减少使用锁的次数,从而使得在大部分情形下能够优化为最佳性能,不会产生不必要的同步开销。

   需要注意的是:在串行代码中使用并发集合是没有意义的,因为它们会增加无谓的开销。

   在.NET Framework4.0以后的版本中提供了命名空间:System.Collections.Concurrent 来解决线程安全问题,通过这个命名空间,能访问以下为并发做好了准备的集合。

   1.BlockingCollection 与经典的阻塞队列数据结构类似,能够适用于多个任务添加和删除数据,提供阻塞和限界能力。

   2.ConcurrentBag 提供对象的线程安全的无序集合

   3.ConcurrentDictionary  提供可有多个线程同时访问的键值对的线程安全集合

   4.ConcurrentQueue   提供线程安全的先进先出集合

   5.ConcurrentStack   提供线程安全的后进先出集合

   这些集合通过使用比较并交换和内存屏障等技术,避免使用典型的互斥重量级的锁,从而保证线程安全和性能。

   ConcurrentQueue 

   ConcurrentQueue 是完全无锁的,能够支持并发的添加元素,先进先出。下面贴代码,详解见注释:

class Program
    {
        private static object o = new object();
        /*定义 Queue*/
        private static Queue<Product> _Products { get; set; }
        private static ConcurrentQueue<Product> _ConcurrenProducts { get; set; }
        /*  coder:天才卧龙  
         *  代码中 创建三个并发线程 来操作_Products 和 _ConcurrenProducts 集合,每次添加 10000 条数据 查看 一般队列Queue 和 多线程安全下的队列ConcurrentQueue 执行情况
         */
        static void Main(string[] args)
        {
            Thread.Sleep(1000);
            _Products = new Queue<Product>();
            Stopwatch swTask = new Stopwatch();//用于统计时间消耗的
            swTask.Start();

            /*创建任务 t1  t1 执行 数据集合添加操作*/
            Task t1 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t2  t2 执行 数据集合添加操作*/
            Task t2 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t3  t3 执行 数据集合添加操作*/
            Task t3 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });

            Task.WaitAll(t1, t2, t3);
            swTask.Stop();
            Console.WriteLine("List<Product> 当前数据量为:" + _Products.Count);
            Console.WriteLine("List<Product> 执行时间为:" + swTask.ElapsedMilliseconds);

            Thread.Sleep(1000);
            _ConcurrenProducts = new ConcurrentQueue<Product>();
            Stopwatch swTask1 = new Stopwatch();
            swTask1.Start();

            /*创建任务 tk1  tk1 执行 数据集合添加操作*/
            Task tk1 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });
            /*创建任务 tk2  tk2 执行 数据集合添加操作*/
            Task tk2 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });
            /*创建任务 tk3  tk3 执行 数据集合添加操作*/
            Task tk3 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });

            Task.WaitAll(tk1, tk2, tk3);
            swTask1.Stop();
            Console.WriteLine("ConcurrentQueue<Product> 当前数据量为:" + _ConcurrenProducts.Count);
            Console.WriteLine("ConcurrentQueue<Product> 执行时间为:" + swTask1.ElapsedMilliseconds);
            Console.ReadLine();
        }

        /*执行集合数据添加操作*/

        /*执行集合数据添加操作*/
        static void AddProducts()
        {
            Parallel.For(0, 30000, (i) =>
            {
                Product product = new Product();
                product.Name = "name" + i;
                product.Category = "Category" + i;
                product.SellPrice = i;
                lock (o)
                {
                    _Products.Enqueue(product);
                }
            });

        }
        /*执行集合数据添加操作*/
        static void AddConcurrenProducts()
        {
            Parallel.For(0, 30000, (i) =>
            {
                Product product = new Product();
                product.Name = "name" + i;
                product.Category = "Category" + i;
                product.SellPrice = i;
                _ConcurrenProducts.Enqueue(product);
            });

        }
    }

    class Product
    {
        public string Name { get; set; }
        public string Category { get; set; }
        public int SellPrice { get; set; }
    }

   结果如下:

   

   从执行时间上来看,使用 ConcurrentQueue 相比 LOCK 明显快了很多!

   1.BlockingCollection 与经典的阻塞队列数据结构类似,能够适用于多个任务添加和删除数据,提供阻塞和限界能力。

   2.ConcurrentBag 提供对象的线程安全的无序集合

   3.ConcurrentDictionary  提供可有多个线程同时访问的键值对的线程安全集合

   4.ConcurrentQueue   提供线程安全的先进先出集合

   5.ConcurrentStack   提供线程安全的后进先出集合

   上面的实例可以使用ConcurrentBag吗?当然是可以的啦,因为:ConcurrentBag 和 ConcurrentQueue一样,操作的对象都是集合,只不过方式不同罢了!同理:小虎斑们也可以尝试使用 ConcurrentStack 在这里,我仅仅贴上使用ConcurrentBag的代码,如下:

 class Program
    {
        private static object o = new object();
        /*定义 Queue*/
        private static Queue<Product> _Products { get; set; }
        private static ConcurrentBag<Product> _ConcurrenProducts { get; set; }
        /*  coder:天才卧龙  
         *  代码中 创建三个并发线程 来操作_Products 和 _ConcurrenProducts 集合,每次添加 10000 条数据 查看 一般队列Queue 和 多线程安全下的队列ConcurrentQueue 执行情况
         */
        static void Main(string[] args)
        {
            Thread.Sleep(1000);
            _Products = new Queue<Product>();
            Stopwatch swTask = new Stopwatch();//用于统计时间消耗的
            swTask.Start();

            /*创建任务 t1  t1 执行 数据集合添加操作*/
            Task t1 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t2  t2 执行 数据集合添加操作*/
            Task t2 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });
            /*创建任务 t3  t3 执行 数据集合添加操作*/
            Task t3 = Task.Factory.StartNew(() =>
            {
                AddProducts();
            });

            Task.WaitAll(t1, t2, t3);
            swTask.Stop();
            Console.WriteLine("List<Product> 当前数据量为:" + _Products.Count);
            Console.WriteLine("List<Product> 执行时间为:" + swTask.ElapsedMilliseconds);

            Thread.Sleep(1000);
            _ConcurrenProducts = new ConcurrentBag<Product>();
            Stopwatch swTask1 = new Stopwatch();
            swTask1.Start();

            /*创建任务 tk1  tk1 执行 数据集合添加操作*/
            Task tk1 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });
            /*创建任务 tk2  tk2 执行 数据集合添加操作*/
            Task tk2 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });
            /*创建任务 tk3  tk3 执行 数据集合添加操作*/
            Task tk3 = Task.Factory.StartNew(() =>
            {
                AddConcurrenProducts();
            });

            Task.WaitAll(tk1, tk2, tk3);
            swTask1.Stop();
            Console.WriteLine("ConcurrentQueue<Product> 当前数据量为:" + _ConcurrenProducts.Count);
            Console.WriteLine("ConcurrentBag<Product> 执行时间为:" + swTask1.ElapsedMilliseconds);
            Console.ReadLine();
        }

        /*执行集合数据添加操作*/

        /*执行集合数据添加操作*/
        static void AddProducts()
        {
            Parallel.For(0, 30000, (i) =>
            {
                Product product = new Product();
                product.Name = "name" + i;
                product.Category = "Category" + i;
                product.SellPrice = i;
                lock (o)
                {
                    _Products.Enqueue(product);
                }
            });

        }
        /*执行集合数据添加操作*/
        static void AddConcurrenProducts()
        {
            Parallel.For(0, 30000, (i) =>
            {
                Product product = new Product();
                product.Name = "name" + i;
                product.Category = "Category" + i;
                product.SellPrice = i;
                _ConcurrenProducts.Add(product);
            });

        }
    }

    class Product
    {
        public string Name { get; set; }
        public string Category { get; set; }
        public int SellPrice { get; set; }
    }

   执行结果如下:

  对于并发下的其他集合,我这边就不做代码案列了!如有疑问,欢迎指正!

   @陈卧龙的博客

 

相关文章
|
30天前
|
Java 调度 C#
C#学习系列相关之多线程(一)----常用多线程方法总结
C#学习系列相关之多线程(一)----常用多线程方法总结
|
30天前
|
安全 编译器 C#
C#学习相关系列之多线程---lock线程锁的用法
C#学习相关系列之多线程---lock线程锁的用法
|
4天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
4天前
|
Java API 调度
安卓多线程和并发处理:提高应用效率
【4月更文挑战第13天】本文探讨了安卓应用中多线程和并发处理的优化方法,包括使用Thread、AsyncTask、Loader、IntentService、JobScheduler、WorkManager以及线程池。此外,还介绍了RxJava和Kotlin协程作为异步编程工具。理解并恰当运用这些技术能提升应用效率,避免UI卡顿,确保良好用户体验。随着安卓技术发展,更高级的异步处理工具将助力开发者构建高性能应用。
|
12天前
|
安全 Java 调度
深入理解Java中的线程安全与锁机制
【4月更文挑战第6天】 在并发编程领域,Java语言提供了强大的线程支持和同步机制来确保多线程环境下的数据一致性和线程安全性。本文将深入探讨Java中线程安全的概念、常见的线程安全问题以及如何使用不同的锁机制来解决这些问题。我们将从基本的synchronized关键字开始,到显式锁(如ReentrantLock),再到读写锁(ReadWriteLock)的讨论,并结合实例代码来展示它们在实际开发中的应用。通过本文,读者不仅能够理解线程安全的重要性,还能掌握如何有效地在Java中应用各种锁机制以保障程序的稳定运行。
|
23天前
|
存储 SQL C#
C# 读取二维数组集合输出到Word预设表格
C# 读取二维数组集合输出到Word预设表格
|
24天前
|
算法 安全 Unix
【C++ 20 信号量 】C++ 线程同步新特性 C++ 20 std::counting_semaphore 信号量的用法 控制对共享资源的并发访问
【C++ 20 信号量 】C++ 线程同步新特性 C++ 20 std::counting_semaphore 信号量的用法 控制对共享资源的并发访问
27 0
|
28天前
|
负载均衡 Java 数据处理
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(三)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
50 2
|
28天前
|
存储 监控 Java
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(二)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
35 1
|
28天前
|
负载均衡 安全 Java
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用(一)
【C++ 并发 线程池】轻松掌握C++线程池:从底层原理到高级应用
57 2

热门文章

最新文章

相关实验场景

更多