一份不可多得的深度学习技巧指南

简介: 本文列举了一些常用的深度学习的训练技巧,对这些技巧进行简单的介绍并说明它们的工作原理。涉及范围广,适合深度学习各领域的研究者。

首发地址:https://yq.aliyun.com/articles/221611

常言道,师傅领进门,修行靠个人,相信很多人或多或少是在别人的建议或带领下步入深度学习这个大坑,然后师傅说深度学习是个玄学,后面就靠个人修行,瞬间就懵了对不对?可能后面经过自己不断实验积累相关经验,会有一些自己的学习心得。本文可谓是深度学习中的一份秘籍,帮助你少走一些弯路。在本文中,列举了一些常用的机器学习的训练技巧,目的是对这些技巧进行简单的介绍并说明它们的工作原理。另外一些建议是斯坦福的CS231n课程及之前总结的网络结构

本文的目录如下:

  • 数据预处理
  • 初始化
  • 训练
  • 正则化
  • 网络结构
  • 自然语言处理
  • 增强学习
  • 网络压缩

数据预处理

(本部分原作者没有写,以个人的理解及相关补充这部分内容)

What:输入神经网络数据的好坏直接关系着网络训练结果,一般需要对数据进行预处理,常用的数据预处理方式有:

  • 去均值:每个原始数据减去全部数据的均值,即把输入数据各个维度的数据都中心化到0
  • 归一化:一种方式是使用去均值后的数据除以标准差,另外一种方式是全部数据都除以数据绝对值的最大值;
  • PCA/白化:这是另外一种形式的数据预处理方式,一种方式是降维处理,另外一种是进行方差处理;

Why:通过对数据进行预处理能够使得它们对模型的影响具有同样的尺度或其他的一些目的。

RefCS231n Convolutional Neural Networks for Visual Recognition.

初始化

What:权重若初始化合理能够提升性能并加快训练速度,偏置一般设置为0,对于权重而言,建议统一到一定区间内:

  • 对于线性层[1]:区间为[-v,v],v = 1/sqrt(输入尺寸),sqrt表示开根号;
  • 对于卷积层[2]:区间为[-v,v],v = 1/sqrt(卷积核的宽度x卷积核的高度x输入深度);
  • 批量标准化[3]在某些方面的应用降低了调整权值初始化的需要,一些研究结果页提出了相应的替代公式。

Why:使用默认的初始化,每个神经元会随着输入数量的增多而存在一个方差,通过求根号缩放每个权重能确保神经元有近似的输出分布。

Ref

What:对于长短期记忆网络(LSTM),遗忘偏置一般设置为1,可以加快训练过程。

Why:直觉是训练开始时,想要信息在细胞之间传播,故不希望细胞忘记它的状态。

RefAn Empirical Exploration of Recurrent Network Architectures, Rafal Jozefowicz et al.


What:对于t-分布领域嵌入算法(t-SNE),原作者建议对于大小为5000~10000之间的数据集,将困惑度设置为5和50之间[1],对于更大的数据集,相应的困惑度也会增。

Why:困惑度决定了每个点的高斯分布的方差大小,更小的困惑度将获得更多的集群,大的困惑度与之相反,太大的困惑度没有任何意义;另外需要考虑的是画出的聚类不能保留原有的规模,聚类之间的距离不一定代表原始的空间几何,不同的困惑度能在数据结构上提供互补的信息,每次运行都会产生不同的结果[2]

Ref

训练

What:除了使用真值硬化目标外,同样可以使用软化目标(softmax输出)训练网络。

RefDistilling the Knowledge in a Neural Network / Dark knowledge, G. Hinton et al.

 

What:学习率可能是需要调参中最重要的一个参数,一种策略是选择一些参数均有随机化学习率,并观察几次迭代后的测试误差。

参数

什么情况下增加性能

原因

注意事项

隐藏节点的数量

增加

增加隐藏节点的数量提升了模型的表示能力

隐藏节点的增加会增加模型每次操作的时间和内存代价

学习率

调整优化

一个不合适的学习率会导致模型效率很低

 

卷积核的宽度

增加

增大核宽度提升模型的参数个数

更宽的核导致一个更窄的输出维度

隐性的零填充

增加

在卷积前补零保持大尺寸的表示

增加了大多数操作的时间和内存代价

权值衰减系数

降低

降低权值衰减系数释放模型的参数

 

Dropout的概率

降低

丢失更少的节点使得单元有更多的机会去拟合训练集

 

Ref:Some advice for tuning the hyperparameters. Ref: Goodfellow et al 2016 Book

 

正则化

What:在RNN中使用Dropout,它仅仅应用于非循环连接[1],但是一些最近的文章提出了一些技巧使得Dropout能应用于循环连接[2]

Ref

 

What:批量标准化(Batch Normalization, BN),增添了一个新的层,作者给出一些额外的技巧加速BN层的工作:

  • 增大学习率;
  • 移除/减少dropout:在不增加过拟合发生的条件下加快训练;
  • 移除/减少L2范数权值归一化;
  • 加快学习率衰减速度:使得网络训练更快;
  • 移除局部响应归一化;
  • 将训练样本打乱地更彻底:防止相同的样本总出现在小批量中(验证集上提高了1%);
  • 减少光度失真;

Why一些好的解释在此

RefAccelerating Deep Network Training by Reducing Internal Covariate Shift, S. Ioffe and C. Szegedy.

 

网络结构

What:使用跳跃式连接,直接将中间层连接到输入/输出层。

Why:作者的观点是通过减少神经网络的底端与顶端之间的处理步骤使得训练深层网络更加简单,并减轻梯度消失问题。

When:在一些CNN结构中或RNN中一些重要的层。

RefGenerating Sequences With Recurrent Neural Networks, Alex Grave et al.

fc518429cfb9edeff85f23342ace082dbbad7747

RNN的跳跃式连接例子

What:为LSTM增加窥视孔连接(连接之前输出到门的输入),根据作者的观点,这个操作对长时间依赖关系有用。

RefLearning Precise Timing with LSTM Recurrent Networks, Felix A. Gers et al.

 

What:大多数的深度学习框架提供了一个结合SoftMax和Log的函数或者是在损失函数中计算SoftMax(在Tensorflow中是softmax_cross_entropy_with_logits,在Torch中是nn.LogSoftMax),这些应该被更好地使用。

Why:Log(SoftMax)在数值上不稳定是小概率,从而导致溢出等不良结果。另外一种流行的方法是在Log中加入一些小数避免不稳定。

 

自然语言处理(NLP)

What:对于RNN和seq2seq模型的一些技巧:

  • 嵌入尺寸:1024620。更小的维度比如256也能导致很好的表现,但是更高的维度不一定导致更好的表现;
  • 对于译码器而言:LSTM>GRU>Vanilla-RNN
  • 2-4层似乎普遍足够,但带有残差的更深网络看起来很难收敛,更多去挖掘更多的技巧;
  • Resd(密集的残差连接)>Res(近连接先前层)>无残差连接;
  • 对于编码器而言:双向>单向(反向输入)>单向;
  • 注意力(加法)>注意力(乘法)>无注意力;
  • 使用光束会导致更好的结果;

RefMassive Exploration of Neural Machine Translation Architectures, Denny Britz, Anna Goldie et al.

 

What:对于seq2seq而言,翻转输入序列的顺序,保持目标序列的完整。

Why:根据作者的观点,这种简单的数据变换极大提升了LSTM的性能。

RefSequence to Sequence Learning with Neural Networks, Ilya Sutskever et al.

 

What:对于seq2seq而言,为编码器和译码器网络使用不同的权值。

RefSequence to Sequence Learning with Neural Networks, Ilya Sutskever et al.


What:当训练时,强制更正译码器的输入;在测试时,使用先前的步骤,这使得训练在开始时非常高效,Samy等人提出了一种基于模型转变的改进方法[1]

Ref1.Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, Samy Bengio et al.

 

What:以无监督的方式训练一个网络去预测文本的下一个字符(char-RNN),该网络将学习一种能用来监督任务的表示(比如情感分析)。

RefLearning to Generate Reviews and Discovering Sentiment, Ilya Sutskever et al.

 

增强学习

What异步:以不同的勘探政策同时训练多个代理,提升了鲁棒性

RefAsynchronous Methods for Deep Reinforcement Learning, V. Mnih.

 

What跳帧:每隔4帧计算一次动作,而不是每帧都计算,对于其它帧,重复这个动作

Why:在Atari游戏中工作得很好,并且使用这个技巧以大约4倍的速度加快了训练过程。

RefPlaying Atari with Deep Reinforcement Learning, V. Mnih. 

 

What历史:不是仅仅将当前帧作为输入,而是将最后的帧与输入叠加,结合间隔为4的跳帧,这意味着我们有一个含t、t-4、t-8及t-12的帧栈

Why:这允许网络有一些动量信息。

RefDeep Reinforcement Learning with Double Q-learning, V. Mnih.

 

What经验回放:为了避免帧间的相关性,作为一个代理不是更新每一帧,最好是在过渡时期的历史中采样一些样本,该思想类似于有监督学习中训练前打乱数据集。

RefPrioritized Experience Replay, Tom Schaul et al.

 

WhatParallel Advantage Actor Critic(PAAC):通过代理的经验以及使用一个单一的同步更新模型使得简化A3C算法成为可能。

RefEfficient Parallel Methods for Deep Reinforcement Learning, Alfredo V. Clemente et al.

 

网络压缩

What在推理中,为了减少层数,通过批量归一化(BN)层能够吸收其它的权值。这是因为在测试时批量归一化进行地是一个简单的线性缩放。

 

作者信息

a67b1090a54a85d5d624502673057b78b6c23cf5

 Conchylicultor谷歌大脑参与者,专注于机器学习和软件开发

Linkedin:https://www.linkedin.com/in/potetienne/

Mail:etiennefg.pot@gmail.com

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Deep Learning Tricks》,作者:Conchylicultor,译者:海棠,审阅:

文章为简译,更为详细的内容,请查看原文

翻译者: 海棠 

Wechat:269970760 

Email:duanzhch@tju.edu.cn

微信公众号:AI科技时讯

157f33dddfc596ede3681e0a2a0e7068dc288cc1

目录
相关文章
|
机器学习/深度学习 数据采集 自然语言处理
一份不可多得的深度学习技巧指南
本文列举了一些常用的深度学习的训练技巧,对这些技巧进行简单的介绍并说明它们的工作原理。涉及范围广,适合深度学习各领域的研究者。
4505 0
|
13天前
|
机器学习/深度学习 API 语音技术
|
1天前
|
机器学习/深度学习 边缘计算 监控
深度学习赋能智能监控:图像识别技术的革新与应用
【4月更文挑战第23天】 随着人工智能的迅猛发展,深度学习技术在图像处理领域取得突破性进展,特别是在智能监控系统中,基于深度学习的图像识别已成为提升系统智能化水平的核心动力。本文旨在探讨深度学习如何优化智能监控系统中的图像识别过程,提高监控效率和准确性,并分析其在不同应用场景下的具体实施策略。通过深入剖析关键技术、挑战及解决方案,本文为读者提供了一个关于深度学习图像识别技术在智能监控领域应用的全面视角。
|
1天前
|
机器学习/深度学习 存储 边缘计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第23天】 随着人工智能技术的飞速发展,深度学习作为其重要分支之一,在图像识别领域取得了显著的成果。本文将探讨深度学习在图像识别中的应用,分析其优势和面临的挑战,并展望未来的发展趋势。
|
3天前
|
机器学习/深度学习 数据采集 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第21天】 本文章深入探讨了深度学习技术在自动驾驶车辆图像识别领域的应用。不同于传统的摘要方式,本文将直接点出研究的核心价值和实际应用成果。我们专注于卷积神经网络(CNN)的创新设计,其在复杂道路场景下的行人和障碍物检测中的高效表现,以及这些技术如何整合到自动驾驶系统中以增强安全性和可靠性。通过实验验证,我们的模型在公开数据集上达到了行业领先水平的准确率,并且在真实世界的测试场景中展现了卓越的泛化能力。
|
3天前
|
机器学习/深度学习 算法 云计算
深度学习在图像识别中的应用与挑战
【4月更文挑战第21天】 随着计算机视觉技术的飞速发展,深度学习已经成为图像识别任务的核心动力。本文旨在探讨深度学习技术在图像识别领域的应用进展,分析其面临的主要挑战,并提出可能的解决方案。通过对卷积神经网络(CNN)的深入研究,我们揭示了其在图像分类、目标检测和语义分割中的关键作用。同时,数据不平衡、模型泛化能力和计算资源限制等问题也被详细讨论。文章最终指出了未来研究的方向,包括网络结构的优化、无监督学习的发展以及跨领域知识迁移的可能性。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用研究
【4月更文挑战第20天】 本研究聚焦于深度学习技术在图像识别领域的应用,并探讨其在自动驾驶系统中的实际效用。文章首先回顾了深度学习与图像处理技术的基础知识,随后详细分析了卷积神经网络(CNN)在车辆环境感知中的关键作用。通过实验数据对比分析,本文验证了所提出算法在提高自动驾驶车辆对周围环境的识别准确性和实时性方面的有效性。最后,讨论了目前技术的局限性及未来可能的研究方向,旨在为进一步的技术突破提供参考。
|
5天前
|
机器学习/深度学习 监控 算法
深度学习驱动下的智能监控革新:图像识别技术的前沿应用
【4月更文挑战第19天】 在数字时代,智能监控系统作为城市安全和效率的守护者,正经历着前所未有的技术变革。本文深入探讨了基于深度学习的图像识别技术如何重塑智能监控领域,通过算法创新提升识别准确率,实时处理大量数据,并在各种环境条件下稳定运行。我们将分析当前最前沿的技术应用案例,探讨其在实际应用中遇到的挑战及未来发展趋势,从而为相关领域的研究者和实践者提供参考和启示。
|
6天前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第18天】 随着人工智能的快速发展,深度学习技术在图像处理和识别领域取得了显著进展。特别是在自动驾驶系统中,基于深度学习的图像识别技术已成为关键技术之一。本文将探讨深度学习在自动驾驶系统中的应用,重点关注卷积神经网络(CNN)和循环神经网络(RNN)在车辆检测、行人识别和交通标志识别等方面的应用。通过对比传统图像识别方法,我们将展示深度学习技术如何提高自动驾驶系统的准确性和鲁棒性。
|
6天前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术在自动驾驶系统中的应用
【4月更文挑战第18天】 随着人工智能的快速发展,特别是深度学习技术的突破性进步,图像识别已成为自动驾驶领域的核心组成部分。本文旨在探讨基于深度学习的图像识别技术如何优化自动驾驶系统的性能,并分析其在实时交通场景中处理复杂视觉信息的能力。文中将介绍几种主要的深度学习模型,包括卷积神经网络(CNN)和递归神经网络(RNN),以及它们在图像分类、目标检测和语义分割中的应用。同时,文章还将讨论当前技术面临的挑战和未来的发展方向。