LruCache算法原理及实现

简介: LruCache算法原理及实现LruCache算法原理LRU为Least Recently Used的缩写,意思也就是近期最少使用算法。LruCache将LinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。

LruCache算法原理及实现

LruCache算法原理

LRULeast Recently Used的缩写,意思也就是近期最少使用算法。LruCacheLinkedHashMap的顺序设置为LRU顺序来实现LRU缓存,每次调用get并获取到值(也就是从内存缓存中命中),则将该对象移到链表的尾端。调用put插入新的对象也是存储在链表尾端,这样当内存缓存达到设定的最大值时,将链表头部的对象(近期最少用到的)移除。

基于LinkedHashMapLRUCache的实现,关键是重写LinkedHashMapremoveEldestEntry方法,在LinkedHashMap中该方法默认返回false(LRUCache本身未考虑线程安全的问题),这样此映射的行为将类似于正常映射,即永远不能移除最旧的元素。

LruCache算法实现的思路

  • 按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,LinkedHashMap提供了LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder)构造函数,该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
  • LinkedHashMap提供了removeEldestEntry(Map.Entry eldest)方法。该方法在每次添加新条目时移除最旧条目,但该方法默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。因而需要重写该方法。

基于LinkedHashMap的LruCache具体实现

import java.util.LinkedHashMap;
import java.util.Map;

public class LruCache<K, V> {
    private LinkedHashMap<K, V> map;//链表存储对象

    private int cacheSize;//cache大小
    private int hitCount;//命中次数
    private int missCount;//未命中次数

    public synchronized final int getCacheSize() {
        return cacheSize;
    }

    public synchronized final int getHitCount() {
        return hitCount;
    }

    public synchronized final int getMissCount() {
        return missCount;
    }

    static final int DEFAULT_CACHE_SIZE = 2;//cache默认大小

    public V put(K key, V value) {
        return map.put(key, value);
    }

    public V get(Object key) {

        if (null == key) {
            throw new NullPointerException(" key == null ");
        }

        V val = null;
        synchronized (this) {
            val = map.get(key);
            if (null != val) {
                hitCount += 1;
                return val;
            }

            missCount += 1;
        }

        return val;
    }

    public LruCache() {
        this(DEFAULT_CACHE_SIZE);
    }

    public LruCache(int cacheSize) {
        this.cacheSize = cacheSize;
        int hashTableSize = (int) (Math.ceil(cacheSize / 0.75f) + 1);

        //LruCache算法实现的关键

        //1、按从近期访问最少到近期访问最多的顺序(即访问顺序)来保存元素,那么请使用下面的构造方法构造LinkedHashMap
        //public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder); //该哈希映射的迭代顺序就是最后访问其条目的顺序,这种映射很适合构建LRU缓存。
        //2、LinkedHashMap提供了removeEldestEntry(Map.Entry<K,V> eldest)方法。该方法可以提供在每次添加新条目时移除最旧条目的实现程序,默认返回false,这样,此映射的行为将类似于正常映射,即永远不能移除最旧的元素。
        map = new LinkedHashMap<K, V>(hashTableSize, 0.75f, true){
            private static final long serialVersionUID = 1L;

            @Override
            protected boolean removeEldestEntry(Map.Entry<K, V> eldest) {
                System.out.println(" ***** size=" + size() + " cacheSize=" + LruCache.this.cacheSize + " ****");
//                return super.removeEldestEntry(eldest);
                return size() > LruCache.this.cacheSize;
            }
        };
    }

    public static void main(String[] args) {

        LruCache<String, String> lruCache = new LruCache<String, String>(3);
        lruCache.put("1", "1");
        lruCache.put("2", "2");
        lruCache.put("3", "3");
        lruCache.put("4", "4");
        lruCache.put("5", "5");

        System.out.println("==========================================================================");
        System.out.println("hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println("==========================================================================");

        System.out.println(lruCache.get("1") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("2") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("3") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());
        lruCache.put("6", "6");
        lruCache.put("7", "7");
        System.out.println(lruCache.get("4") + " hitCount=" + lruCache.getHitCount() + " missCount=" + lruCache.getMissCount());
        lruCache.put("8", "8");

        System.out.println(lruCache.get("5") + " hitCount=" + lruCache.getHitCount() + " missCount=" +  lruCache.getMissCount());

        System.out.println("==========================================================================");
        for(Map.Entry<String, String> entry : lruCache.map.entrySet()) {
            System.out.println(entry.getKey()+":"+entry.getValue());
        }

    }
}

执行结果

***** size=1 cacheSize=3 ****
***** size=2 cacheSize=3 ****
***** size=3 cacheSize=3 ****
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
==========================================================================
hitCount=0 missCount=0
==========================================================================
null hitCount=0 missCount=1
null hitCount=0 missCount=2
3 hitCount=1 missCount=2
4 hitCount=2 missCount=2
4 hitCount=3 missCount=2
4 hitCount=4 missCount=2
4 hitCount=5 missCount=2
***** size=4 cacheSize=3 ****
***** size=4 cacheSize=3 ****
4 hitCount=6 missCount=2
***** size=4 cacheSize=3 ****
null hitCount=6 missCount=3
==========================================================================
7:7
4:4
8:8

参考文档:

相关文章
|
21天前
|
机器学习/深度学习 存储 算法
神经网络分类算法原理详解
神经网络分类算法原理详解
43 0
|
1月前
|
算法
经典控制算法——PID算法原理分析及优化
这篇文章介绍了PID控制算法,这是一种广泛应用的控制策略,具有简单、鲁棒性强的特点。PID通过比例、积分和微分三个部分调整控制量,以减少系统误差。文章提到了在大学智能汽车竞赛中的应用,并详细解释了PID的基本原理和数学表达式。接着,讨论了数字PID的实现,包括位置式、增量式和步进式,以及它们各自的优缺点。最后,文章介绍了PID的优化方法,如积分饱和处理和微分项优化,以及串级PID在电机控制中的应用。整个内容旨在帮助读者理解PID控制的原理和实际运用。
72 1
|
1月前
|
机器学习/深度学习 算法 数据可视化
探索线性回归算法:从原理到实践
探索线性回归算法:从原理到实践【2月更文挑战第19天】
21 0
探索线性回归算法:从原理到实践
|
8天前
|
机器学习/深度学习 自然语言处理 算法
|
21天前
|
缓存 算法 关系型数据库
深度思考:雪花算法snowflake分布式id生成原理详解
雪花算法snowflake是一种优秀的分布式ID生成方案,其优点突出:它能生成全局唯一且递增的ID,确保了数据的一致性和准确性;同时,该算法灵活性强,可自定义各部分bit位,满足不同业务场景的需求;此外,雪花算法生成ID的速度快,效率高,能有效应对高并发场景,是分布式系统中不可或缺的组件。
深度思考:雪花算法snowflake分布式id生成原理详解
|
28天前
|
算法
PID算法原理分析及优化
这篇文章介绍了PID控制方法,一种广泛应用于机电、冶金等行业的经典控制算法。PID通过比例、积分、微分三个部分调整控制量,以适应系统偏差。文章讨论了比例调节对系统响应的直接影响,积分调节如何消除稳态误差,以及微分调节如何减少超调。还提到了数字PID的实现,包括位置式、增量式和步进式,并探讨了积分饱和和微分项的优化策略。最后,文章简述了串级PID在电机控制中的应用,并强调了PID控制的灵活性和实用性。
38 1
|
1月前
|
算法 数据库 索引
什么是雪花算法?啥原理?
什么是雪花算法?啥原理?
32 0
什么是雪花算法?啥原理?
|
1月前
|
负载均衡 算法 网络协议
负载均衡原理与算法详述
大型网站面临的挑战大型网站都要面对庞大的用户量,高并发,海量数据等挑战。为了提升系统整体的性能,可以采用垂直扩展和水平扩展两种方式。
37 0
负载均衡原理与算法详述
|
1月前
|
机器学习/深度学习 算法
反向传播原理的梯度下降算法
反向传播原理的梯度下降算法
|
1月前
|
机器学习/深度学习 算法 关系型数据库
反向传播原理的反向传播算法
反向传播原理的反向传播算法