[家里蹲大学数学杂志]第267期实变函数总结性教程

简介: 1 可测函数   1.1可测函数与简单函数的关系 $$\beex \bea f\mbox{ 非负可测}&\ra \exists\ 0\leq \phi_k\nearrow f,\\ f\mbox{ 有界可测}&\ra \exists\ \phi_k\rightrightarrows f,\\ f\mbox{ 一般可测}&\ra \exists\ \phi_k\to f.

1 可测函数

 

1.1可测函数与简单函数的关系

$$\beex \bea f\mbox{ 非负可测}&\ra \exists\ 0\leq \phi_k\nearrow f,\\ f\mbox{ 有界可测}&\ra \exists\ \phi_k\rightrightarrows f,\\ f\mbox{ 一般可测}&\ra \exists\ \phi_k\to f. \eea \eeex$$ 简言之, 非负可测 $\ra$ 递增逼近; 有界可测 $\ra$ 一致逼近; 一般可测 $\ra$ 点态逼近.

 

1.2 可测函数与连续函数的关系 (Lusin 定理)

$$\bex f\ae\mbox{ 有限, 可测}\ra \forall\ \delta>0,\ \exists\ F\subset E,\ m(E\bs F)<\delta, f|_F\mbox{ 连续}. \eex$$ 简言之, $f\ae$ 有限, 可测 $\ra$ $f$ 基本上连续.

 

1.3 可测函数的各种收敛

其中,

(1) Egrov 定理: $$\bex \serd{\ba{ll} mE<\infty\\ f_k\ae\mbox{ 收敛于 }f \ea}\ra f_k\mbox{ 基本上一致收敛于 }f. \eex$$

(2) Lebesgue 定理: $$\bex \serd{\ba{ll} mE<\infty\\ f_k\ae\mbox{ 收敛于 }f \ea}\ra (f_k\ra f). \eex$$

(3) Riesz 定理: $$\bex (f_k\ra f)\ra \exists\ \sed{k_j},\st f_{k_j}\ae\mbox{ 收敛于 }f. \eex$$

 

2 Lebesgue 积分

 

2.1 非负可测函数的积分

 

(1) Levi 定理: $$\bex 0\leq f_k\nearrow f\ra \int \lim f_k=\lim \int f_k. \eex$$

(2) 逐项积分: $$\bex 0\leq f_k\ra \int_E \sum f_k=\sum \int_E f_k. \eex$$

(3) Fatou 引理: $$\bex 0\leq f_k\ra \int_E\varliminf f_k\leq \varliminf \int_E f_k. \eex$$

(4) Fubini 定理: $$\bex 0\leq f\ra \int_{A\times B}f=\int_A\int_B f. \eex$$

 

2.2 一般可测函数的积分

(1) 积分的绝对连续性 (AC): $$\bex f\in L(E)\ra {\forall\ \ve>0,\ \exists\ \delta>0,\ \forall\ A\subset E: mA<\delta,\atop\mbox{ 有 }\sev{\int_A f(x)\rd x} \leq \int_A|f(x)|\rd x<\ve.} \eex$$

(2) Lebesgue 控制收敛: $$\bex \serd{\ba{ll} |f_i|\leq F,\quad F\in L(E)\\ f_i\to f,\ae\mbox{ 于 }E \ea}\ra\sedd{\ba{ll} \lim_{i\to\infty}\int_E|f_i(x)-f(x)|\rd x=0\\ \lim_{i\to\infty}\int_E f_i(x)\rd x =\int_E f(x)\rd x. \ea} \eex$$

(3) 依测度控制收敛: $$\bex \serd{\ba{ll} |f_i|\leq F,\quad F\in L(E)\\ f_i\ra f \ea}\ra\sedd{\ba{ll} \lim_{i\to\infty}\int_E|f_i(x)-f(x)|\rd x=0\\ \lim_{i\to\infty}\int_E f_i(x)\rd x =\int_E f(x)\rd x. \ea} \eex$$

(4) 逐项积分:$$\bex \serd{\ba{ll} f_i\in L(E)\\ \sum_{i=1}^\infty \int_E|f_i(x)|\rd x<+\infty \ea}\ra\sedd{\ba{ll} \sum_{i=1}^\infty f_i(x),\ae \mbox{ 收敛, 于 }E\\ \int_E\sum_{i=1}^\infty f_i(x)\rd x =\sum_{i=1}^\infty \int_Ef_i(x)\rd x. \ea} \eex$$

(5) 积分号下求导: 设 $f(x,t)$ 是 $E\times (a,b)$ 上的实函数, 则 $$\bex \serd{\ba{ll} f(\cdot,t)\in L(E),\quad \forall\ t\\ f(x,\cdot)\mbox{ 可导}, \sev{\frac{\p f}{\p t}(x,\cdot)}\leq F(x),\ae\mbox{ 于 }E,\quad F\in L(E) \ea}\\ \ra \frac{\rd}{\rd t}\int_E f(x,t)\rd x =\int_E \frac{\p}{\p t}f(x,t)\rd x. \eex$$

(6) Fubini 定理: $$\bex f\in L(A\times B)\ra \int_{A\times B}f=\int_A\int_Bf. \eex$$

 

2.3 Lebesgue 积分与 Riemann 积分的关系

$$\bex R[a,b]\subset L[a,b],\quad R^+[a,\infty)\subset L^+[a,+\infty). \eex$$

 

附言

若需更详细的, 请参阅 《家里蹲大学数学杂志第4卷第253期, 实变函数讲义》. 

目录
相关文章
[家里蹲大学数学杂志]第426期一个无理数的证明
试证: $\dps{\cos\frac{2\pi}{5}}$ 为无理数.   证明: 设 $$\bex z=e^{i\frac{2\pi}{5}}, \eex$$ 则 $$\beex \bea z^5&=e^{i2\pi}=1,\\ (z-1)(z^4+z^3+z^2+z+1)&=0,\\ z^4+z^3+z^2+z+1&=0,\\ z^2+z+1+z^{-1}+z^{-2}&=0.
581 0
|
Perl 关系型数据库 RDS
[家里蹲大学数学杂志]第418期南开大学2013年实变函数期末考试试题参考解答
  1. 设 $A$ 为非可数的实数集合. 证明: 存在整数 $n$ 使得 $A\cap [n,n+1]$ 为可数集. ($15'$)   证明: 用反证法. 若 $$\bex A\cap [n,n+1]\mbox{ 可数,}\quad \forall\ n\in\bbZ.
1081 0
|
Perl
[家里蹲大学数学杂志]第410期定积分难题
  1. (1). 设 $x\geq 0$, $n$ 为自然数, 证明: $$\bex x^n\geq n(x-1)+1; \eex$$ (2). $\forall\ n$, 求证: $$\bex \int_0^{1+\frac{2}{\sqrt{n}}}x^n\rd x>2; \eex$$ (3).
772 0
|
Perl 资源调度
[家里蹲大学数学杂志]第392期中山大学2015年泛函分析考博试题回忆版
1. ($12'$) 求 $L^p(\bbR)$, $1\leq p\sigma}f_n(t)\rd t=0,\quad \forall\ \sigma>0. \eex$$ 试证: $$\bex f_n\to \delta,\mbox{ in }\mathcal{D}'(\bbR).
852 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第390期中国科学院大学2014-2015-1微积分期末考试试题参考解答
  1. ($5'$) 利用 $\ve-N$ 语言证明 $$\bex \vlm{n}\frac{2015\cdot 2^n+20\sin n}{n!}=0. \eex$$   证明: 对 $\forall\ \ve>0$, 取 $$\bex N=\sez{\frac{4050}{\ve}...
1050 0
|
Perl Windows 资源调度
[家里蹲大学数学杂志]第387期一套实变函数期末试题参考解答
  一. (本题 $40'$, 每小题 $8$ 分) 证明以下结论: (1). 设 $\scrA$ 是由 $[0,1]$ 上互不相交的正测度集构成的集族, 则 $\scrA$ 中至多有可数个集.
969 0
|
机器学习/深度学习 Perl
[家里蹲大学数学杂志]第389期中国科学院大学2014-2015-1微积分期中考试试题参考解答
  1. 设 $A,B,C$ 都是集合 $M$ 的子集, 请证明: $$\bex (C\subset A)\wedge (C\subset B)\lra (C\subset A\cap B). \eex$$   证明: 显然成立.
1203 0
家里蹲大学数学杂志按学校分类目录[2016年8月23日更新]
├─中南大学│      第3卷第81期_中南大学2011年数学分析考研试题参考解答│      第4卷第266期_中南大学2013年高等代数考研试题参考解答│      ├─中国人民大学│      第5卷第370期_中国人民大学2003年高等代数考研试题参考解答│      第5卷第371期_中...
1195 0
|
资源调度 Perl
[家里蹲大学数学杂志]第328期詹兴致矩阵论习题参考解答
说明:  1. 大部分是自己做的, 少部分是参考文献做的, 还有几个直接给出参考文献. 2. 如果您有啥好的想法, 好的解答, 热切地欢迎您告知我, 或者在相应的习题解答网页上回复. 哪里有错误, 也盼望您指出.
1232 0
[家里蹲大学数学杂志]第240期钟玉泉编复变函数总复习纲要
第240期_钟玉泉编复变函数总复习纲要   下载后请自行打印、预览或学习, 不要到处传播于网络, 更不要用于商业用途.
784 0