证明: 当 p≥1 时, \bex\vsmn1(n+1)p√n<p.\eex (国外赛题)
证明: 通项 \beex \bea a_n&=\frac{1}{(n+1)\sqrt[p]{n}} =\frac{n}{\sqrt[p]{n}}\cdot \frac{1}{n(n+1)} =n^\frac{p-1}{p}\sex{\frac{1}{n}-\frac{1}{n+1}}\\ &=n^\frac{p-1}{p} \sez{\sex{\frac{1}{\sqrt[p]{n}}}^p -\sex{\frac{1}{\sqrt[p]{n+1}}}^p}\\ &=n^\frac{p-1}{p} \cdot p\sex{\frac{1}{\sqrt[p]{n+\tt}}}^{p-1} \sex{ \frac{1}{\sqrt[p]{n}}-\frac{1}{\sqrt[p]{n+1}}}\quad\sex{0<\tt<1}\\ &<p\sez{\frac{1}{\sqrt[p]{n}}-\frac{1}{\sqrt[p]{n+1}}} \quad\sex{\frac{n^\frac{p-1}{p}}{\sex{\sqrt[p]{n+\tt}}^{p-1}}<1}, \eea \eeex 而前 n 项和 \bexSn=a1+n∑k=2ak<a1+n∑k=2p\sez1p√n−1p√n+1=a1+p\sex1p√2−1p√n+1,\eex \bex\vlmnSn≤a1+pp√2<p\sex1−1p√2+pp√2=p.\eex