艾伟:C#多线程学习(六) 互斥对象

简介: 本系列文章导航C#多线程学习(一) 多线程的相关概念C#多线程学习(二) 如何操纵一个线程C#多线程学习(三) 生产者和消费者C#多线程学习(四) 多线程的自动管理(线程池)C#多线程学习(五) 多线程的自动管理(定时器)C#多线程学习(六) 互斥对象 如何控制好多个线程相互之间的联系,不产生冲突和重复,这需要用到互斥对象,即:System.Threading 命名空间中的 Mutex 类。

本系列文章导航

C#多线程学习(一) 多线程的相关概念

C#多线程学习(二) 如何操纵一个线程

C#多线程学习(三) 生产者和消费者

C#多线程学习(四) 多线程的自动管理(线程池)

C#多线程学习(五) 多线程的自动管理(定时器)

C#多线程学习(六) 互斥对象

如何控制好多个线程相互之间的联系,不产生冲突和重复,这需要用到互斥对象,即:System.Threading 命名空间中的 Mutex 类。

我们可以把Mutex看作一个出租车,乘客看作线程。乘客首先等车,然后上车,最后下车。当一个乘客在车上时,其他乘客就只有等他下车以后才可以上车。而线程与Mutex对象的关系也正是如此,线程使用Mutex.WaitOne()方法等待Mutex对象被释放,如果它等待的Mutex对象被释放了,它就自动拥有这个对象,直到它调用Mutex.ReleaseMutex()方法释放这个对象,而在此期间,其他想要获取这个Mutex对象的线程都只有等待。

下面这个例子使用了Mutex对象来同步四个线程,主线程等待四个线程的结束,而这四个线程的运行又是与两个Mutex对象相关联的。

其中还用到AutoResetEvent类的对象,可以把它理解为一个信号灯。这里用它的有信号状态来表示一个线程的结束。

// AutoResetEvent.Set()方法设置它为有信号状态

// AutoResetEvent.Reset()方法设置它为无信号状态

Mutex 类的程序示例:

Code
using System;
using System.Threading;

namespace ThreadExample
{
public class MutexSample
{
  
static Mutex gM1;
  
static Mutex gM2;
  
const int ITERS = 100;
  
static AutoResetEvent Event1 = new AutoResetEvent(false);
  
static AutoResetEvent Event2 = new AutoResetEvent(false);
  
static AutoResetEvent Event3 = new AutoResetEvent(false);
  
static AutoResetEvent Event4 = new AutoResetEvent(false);

  
public static void Main(String[] args)
   {
Console.WriteLine(
"Mutex Sample ");
//创建一个Mutex对象,并且命名为MyMutex
gM1 = new Mutex(true,"MyMutex");
//创建一个未命名的Mutex 对象.
gM2 = new Mutex(true);
Console.WriteLine(
" - Main Owns gM1 and gM2");

AutoResetEvent[] evs
= new AutoResetEvent[4];
evs[
0] = Event1; //为后面的线程t1,t2,t3,t4定义AutoResetEvent对象
evs[1] = Event2;
evs[
2] = Event3;
evs[
3] = Event4;

MutexSample tm
= new MutexSample( );
Thread t1
= new Thread(new ThreadStart(tm.t1Start));
Thread t2
= new Thread(new ThreadStart(tm.t2Start));
Thread t3
= new Thread(new ThreadStart(tm.t3Start));
Thread t4
= new Thread(new ThreadStart(tm.t4Start));
t1.Start( );
// 使用Mutex.WaitAll()方法等待一个Mutex数组中的对象全部被释放
t2.Start( );// 使用Mutex.WaitOne()方法等待gM1的释放
t3.Start( );// 使用Mutex.WaitAny()方法等待一个Mutex数组中任意一个对象被释放
t4.Start( );// 使用Mutex.WaitOne()方法等待gM2的释放

Thread.Sleep(
2000);
Console.WriteLine(
" - Main releases gM1");
gM1.ReleaseMutex( );
//线程t2,t3结束条件满足

Thread.Sleep(
1000);
Console.WriteLine(
" - Main releases gM2");
gM2.ReleaseMutex( );
//线程t1,t4结束条件满足

//等待所有四个线程结束
WaitHandle.WaitAll(evs);
Console.WriteLine(
" Mutex Sample");
Console.ReadLine();
   }

  
public void t1Start( )
   {
Console.WriteLine(
"t1Start started, Mutex.WaitAll(Mutex[])");
Mutex[] gMs
= new Mutex[2];
gMs[
0] = gM1;//创建一个Mutex数组作为Mutex.WaitAll()方法的参数
gMs[1] = gM2;
Mutex.WaitAll(gMs);
//等待gM1和gM2都被释放
Thread.Sleep(2000);
Console.WriteLine(
"t1Start finished, Mutex.WaitAll(Mutex[]) satisfied");
Event1.Set( );
//线程结束,将Event1设置为有信号状态
   }
  
public void t2Start( )
   {
Console.WriteLine(
"t2Start started, gM1.WaitOne( )");
gM1.WaitOne( );
//等待gM1的释放
Console.WriteLine("t2Start finished, gM1.WaitOne( ) satisfied");
Event2.Set( );
//线程结束,将Event2设置为有信号状态
   }
  
public void t3Start( )
   {
Console.WriteLine(
"t3Start started, Mutex.WaitAny(Mutex[])");
Mutex[] gMs
= new Mutex[2];
gMs[
0] = gM1;//创建一个Mutex数组作为Mutex.WaitAny()方法的参数
gMs[1] = gM2;
Mutex.WaitAny(gMs);
//等待数组中任意一个Mutex对象被释放
Console.WriteLine("t3Start finished, Mutex.WaitAny(Mutex[])");
Event3.Set( );
//线程结束,将Event3设置为有信号状态
   }
  
public void t4Start( )
   {
Console.WriteLine(
"t4Start started, gM2.WaitOne( )");
gM2.WaitOne( );
//等待gM2被释放
Console.WriteLine("t4Start finished, gM2.WaitOne( )");
Event4.Set( );
//线程结束,将Event4设置为有信号状态
   }
}
}

程序的输出结果:

结果
Mutex Sample
- Main Owns gM1 and gM2
t1Start started, Mutex.WaitAll(Mutex[])
t2Start started, gM1.WaitOne( )
t3Start started, Mutex.WaitAny(Mutex[])
t4Start started, gM2.WaitOne( )
- Main releases gM1
t2Start finished, gM1.WaitOne( ) satisfied
t3Start finished, Mutex.WaitAny(Mutex[])
- Main releases gM2
t1Start finished, Mutex.WaitAll(Mutex[]) satisfied
t4Start finished, gM2.WaitOne( )
Mutex Sample

 

从执行结果可以很清楚地看到,线程t2,t3的运行是以gM1的释放为条件的,而t4在gM2释放后开始执行,t1则在gM1和gM2都被释放了之后才执行。Main()函数最后,使用WaitHandle等待所有的AutoResetEvent对象的信号,这些对象的信号代表相应线程的结束。

目录
相关文章
|
1月前
|
Java 调度 C#
C#学习系列相关之多线程(一)----常用多线程方法总结
C#学习系列相关之多线程(一)----常用多线程方法总结
|
1月前
|
C#
C#学习相关系列之数据类型类的三大特性(二)
C#学习相关系列之数据类型类的三大特性(二)
|
1月前
|
C#
C#学习相关系列之yield和return的区别
C#学习相关系列之yield和return的区别
|
27天前
|
存储 开发框架 安全
【C++ 线程】深入理解C++线程管理:从对象生命周期到线程安全
【C++ 线程】深入理解C++线程管理:从对象生命周期到线程安全
86 0
|
30天前
|
安全 C++ 开发者
【C++多线程同步】C++多线程同步和互斥的关键:std::mutex和相关类的全面使用教程与深度解析
【C++多线程同步】C++多线程同步和互斥的关键:std::mutex和相关类的全面使用教程与深度解析
18 0
|
1月前
|
C#
C#学习系列相关之多线程(二)----Thread类介绍
C#学习系列相关之多线程(二)----Thread类介绍
|
1月前
|
C#
C#学习相关系列之数据类型类----嵌套类和嵌套方法(三)
C#学习相关系列之数据类型类----嵌套类和嵌套方法(三)
|
1月前
|
存储 C# 索引
C#学习相关系列之数据类型类的定义(一)
C#学习相关系列之数据类型类的定义(一)
|
9天前
|
存储 Java 数据库连接
java多线程之线程通信
java多线程之线程通信
|
20天前
|
存储 缓存 NoSQL
Redis单线程已经很快了6.0引入多线程
Redis单线程已经很快了6.0引入多线程
31 3