WinRT开发语言的功能和效率

简介: WinRT开发有着多种选择性,就编程语言这一点就表现的很突出;这里就这一点 深入展开,探讨在WinRT开发之初如何依据各 个编程语言的特性、功能和效率来对 产品的技术方向做出选择。 这里我选择运行计算复杂度较高的算法作为测试方法,虽然不能代表全部,但 是很大程度上展示大家平时开发过程中所面临的常见场景 和问题。

WinRT开发有着多种选择性,就编程语言这一点就表现的很突出;这里就这一点 深入展开,探讨在WinRT开发之初如何依据各 个编程语言的特性、功能和效率来对 产品的技术方向做出选择。

这里我选择运行计算复杂度较高的算法作为测试方法,虽然不能代表全部,但 是很大程度上展示大家平时开发过程中所面临的常见场景 和问题。考虑到演示和 理解,就选择了查找100000以内的所有素数的个数的算法作为演示。另外也顺带演 示如何在WinRT下实现多编程语言和技 术之间的协作吧。

关于基本知识和算法吧详细的说明,请自行搜索各大引擎吧(关键 词:prime、素数),这里我就列举在各个语言下我的简单实现吧,其中包括使用 普通算法和并 行计算的两个版本。

 

第一部分,从目前.NET主流来看吧,以C# 为例,普通版本,这个没什么多说的,就是从前往后看某个数是不是素数:

private static int 
CountingInternal(int n)
{
     var numprimes = 1;
     for (var i = 3; i <= n; i += 2)
     {
         var isPrime = true;
         var limit = Math.Ceiling(Math.Sqrt(i)) + 1;
         for (var j = 3; j < limit; j += 2)
         {
             if (i%j == 0)
             {
                 isPrime = false;
                 break;
             }
         }
         if (isPrime)
         {
             numprimes++;
         }
     }
     return numprimes;
}

并行版本稍微复杂一点点,选择Parallel.For来并行执行一个从1至n/2的并行 循环(我这里偷懒了一下,没有处理奇 偶数的情况,因为我的调用时传入的都是 偶数),发现是素数,使用Interlocked辅助方法给计数增加1。

private static int 
CountingParallel(int n)
{
     var numprimes = 1;
     Parallel.For(1, n/2, i =>
     {
         if (IsPrime(i*2 + 1))
         {
              Interlocked.Increment(ref numprimes);
         }
     });
     return numprimes;
}

public static bool IsPrime(int n)
{
     if (n%2 == 0)
         return false;
     var limit = (int) (Math.Ceiling(Math.Sqrt(n)) + 1);
     for (var i = 3; i < limit; i += 2)
     {
         if (n%i == 0)
         {
             return false;
         }
     }
     return true;
}

第一种场景,直接嵌入算法到C# WinRT App工程,执行结果如下(单位毫 秒):

执行次数 1(启动) 2 3 4 5
普通 14.0299 9.0005 9.1825 8.0021 11.0181
并行 6.0008 2.0004 2.9993 2.0014 3.999

第二种场景,将C#算法包装在一个类库里(注意 是CLR类库,只能在C#/VB直接通用),在C# WinRT App工程中调用这个类库,执行 结果如下(单位毫秒):

执行次数 1(启动) 2 3 4 5
普通 12.0299 9.0019 10.003 9.0014 9.00017
并行 6.0008 2 3.0003 2.9997 1.9995

第三种场景,将C#算法包装到一个Windows Runtime Component(WRC)中,在C# WinRT App工程中调用这个WRC类库,执行结 果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  11.9904  9.0032  9  9。0028 9.00149 
并行   6.0008  1.9817  1.9985  1.9993  2

第四种场景,将C#算法包装到一个Windows Runtime Component(WRC)中,在WinJS App工程中调用这个WRC类库,执行结果如 下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  11  9  8  9 8
并行   4  1  1  3  2

小结:以上是从.NET角度来进行的比较,很容易 看出第一次CLR加载在这里性能损耗表现的很明显,完成加载之后性能将稳定在一 定范 围内波动;另外,并行计算在纯算法的应用中有很明显的性能优势。

 

第二部分,接下来我们回归Native环境,这里我 依然使用普通和并行计算两种来尝试,普通的依然没什么可说的(实际上和C#的没 区 别,除了关键字不一样)。

static int CountingInternal(int n)
{
     auto numprimes = 1;
     for (auto i = 3; i <= n; i += 2)
     {
         auto isPrime = true;
         auto limit = ceil(sqrt(i)) + 1;

         for (auto j = 3; j < limit; j += 2)
         {
             if (i%j == 0)
             {
                 isPrime = false;
                 break;
             }
         }

         if (isPrime)
         {
             numprimes++;
         }
     }
     return numprimes;
}

并行版本,需要注意的是C++ lambda的传值 和作用域问题,其他的和C#的没区别:

static bool IsPrime(int n)
{
     if (n%2 == 0)
         return false;
     auto limit = (int) (ceil(sqrt(n)) + 1);
     for(auto i=3; i<limit; i+=2)
     {
         if(n%i == 0)
         {
             return false;
         }
     }
     return true;
}

static int CountingParallel(int n)
{
     auto numprimes = 1;
     parallel_for(1, n/2, [&](int i)
     {
         if(IsPrime(i*2+1))
         {
             InterlockedIncrement((volatile unsigned long*)&numprimes);
         }
     });
     return numprimes;
}

第一种场景,直接将C++算法放到C++ WinRT App 中使用,执行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  8.0019 7.9991  8.0209  8.9843  8.0181 
并行   1.9794  1.998  1.9994  1.984  2.0003

第二种场景,将C++算法包装在DLL中,在C++ WinRT App中使用,执行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  9 9  9  8  9 
并行   3 2  3  2  2

第三种场景,将C++算法包装在动态连接库Dll中,在C# WinRT App中通过 PInvoke来调用,执行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  9 9  8  9  9 
并行   3 2  3  2  3

第四种场景,将C++算法包装在静态链接库Lib中,在C++ WinRT App中调用,执 行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  8 8  8  9  9 
并行   2 3  3  2  3

第五种场景,将C++算法包装在Windows Runtime Component(WRC)中,在C# WinRT App中调用,执行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  8.0014 8.0191  8.0293  8.0019  9.0291
并行   1.9994 1.9999  1.998  1.9994  2.99982

第六种场景,将Windows Runtime Component(WRC)中,在WinJS App中调用, 执行结果如下(单位毫秒):

执行次数  1(启动)  2 3 4
普通  9 8  9  8  8 
并行   2 2  3  2  3

第七种场景是将C++算法包装在Windows Runtime Library(WRL,基于COM的底 层开发)中,然后在任何一种WinRT App中调用,可以预见这是一种很强大的方 式,但同时也是最费解的一种方式,我成功的包装了普通算法的COM版,但是尝试 了很长时间不能成功实现并行运算 的版本,也就放弃在这里展示了,如果你知道 如何在WRL中实现并行计算并返回 IAsyncOperation<T>,请不吝赐教。 

小结:基于C++的实现在适用性、稳定性和执行效率上无可挑剔,如果对于所有 细节(包括第一次启动)的效率考虑,C++是优先 的;如果考虑到C++的复杂度, 如果项目对性能要求可以适当放松但对进度要求很高的时候,选择CLR会比较容易 控制的;如果原来已有的Web项目 向WinRT迁移,那么前段展示则可以考虑使用 WinJS+HTML来实现,后台算法根据需要选择C++或者CLR。

 

第三部分,如果所有的算法全部运行在 JavaScript中,那么其性能如何呢?这里我先买个关子,留待你自己去探究和发 掘。

 

总结,WinRT在编程语言的选择性上有着非常好的 灵活性,在做选择的时候需要充分考虑自己的要求,比如性能、比如工期、比如经 验等 等。对于全新项目,在有经验的情况下,追求极致性能的首先首当其冲是 C++,如果考虑到经验和掌控,可以选择使用C++做底层,选择相对容易上手 的 C#/VB或者HTML+JS做界面的方法;如果项目工期要求很紧,或者从老系统迁移,那 么这时候更多的考虑是使用已有资源,直到性能瓶颈的时 候才采取措 施——以C++重写性能瓶颈来解决,当然,如果没有C++经验,也可以考 虑使用C#/VB来 实现WRC以包装核心逻辑,从而提升运行效率。目前已有部分软件支持WinRT,Spread WinRT 就是其中之一。它可以将 Microsoft Excel 的强大功能嵌入到 Windows 8 商店应用程序中,使用丰富的内嵌数据可视化功能展现核心数据和分析结果。

 

附以上测试源代码和测试工程,点击这里下载

相关文章
|
13天前
|
开发框架 Linux API
Qt:构建高效且用户友好的跨平台应用
Qt:构建高效且用户友好的跨平台应用
|
2月前
|
开发框架 前端开发 Android开发
跨平台应用程序开发如何选择框架
跨平台应用程序开发如何选择框架
|
13天前
|
开发框架 自然语言处理 Linux
Qt:构建强大跨平台应用程序的框架
Qt:构建强大跨平台应用程序的框架
|
8天前
|
前端开发 开发工具 Android开发
探索移动应用开发的未来:跨平台工具与原生系统整合
【4月更文挑战第30天】 在移动计算领域,应用的多样性及其开发模式一直在不断进化。本文旨在剖析移动应用开发领域的新趋势,特别是跨平台开发工具的崛起以及它们与原生移动操作系统之间的融合。我们将探讨如何通过这些工具实现高效的应用构建,同时保持与操作系统底层特性的紧密集成。文章还将展望移动应用生态系统的未来,包括新技术如何影响开发者和用户体验。
|
9天前
|
前端开发 开发工具 Android开发
移动应用开发的未来:跨平台工具与原生系统整合
【4月更文挑战第29天】 在本文中,我们将探讨移动应用开发领域的最新趋势,特别是关注跨平台工具的兴起以及它们如何与原生移动操作系统互动。随着技术的进步和市场需求的变化,开发者面临着在保持应用性能的同时,快速部署到多个平台的挑战。通过分析当前流行的跨平台框架如Flutter、React Native和Xamarin,以及它们与传统的iOS和Android操作系统之间的关系,我们旨在提供一个全面的视角来理解这一现象及其对未来移动应用开发的可能影响。
|
29天前
|
前端开发 Android开发 开发者
探索移动应用开发的未来:跨平台工具与原生系统的挑战
【4月更文挑战第9天】 在移动计算的时代,应用开发正经历着前所未有的变革。本文将深入探讨移动应用开发的新趋势,特别是跨平台开发工具的兴起以及它们如何影响着原生操作系统的应用生态。我们将分析跨平台工具如React Native和Flutter所带来的便利性,同时考察它们在性能、用户体验和系统整合方面所面临的挑战。此外,文章还将探讨移动操作系统的最新发展,包括它们如何处理多任务、安全性问题以及如何为未来的创新铺平道路。通过本文,读者将获得对移动应用开发现状及未来方向的深刻理解。
|
2月前
|
开发框架 前端开发 JavaScript
移动应用开发的未来趋势:跨平台框架与原生系统整合
随着移动互联网的迅猛发展,移动应用已成为日常生活和商业活动中不可或缺的组成部分。本文将探讨移动应用开发领域的未来发展趋势,重点关注跨平台开发框架的兴起以及它们如何与原生移动操作系统进行整合。我们将分析Flutter、React Native等流行框架的技术特点,并讨论它们在提高开发效率、降低成本和优化用户体验方面的潜在优势。文章还将预测这些技术如何塑造未来移动应用开发的方向,为开发者和企业提供前瞻性的指导。
28 4
|
开发框架 自然语言处理 前端开发
一个基于.NetCore开发、模块化、跨平台、多语言商城系统
一个基于.Net Core MVC开发的、简单、模块化、跨平台、多语言的电子商务系统。项目采用模块化架构,代码清晰,便于扩展;功能完善、集成了外贸常见的支付方式;支持多个主题切换;所采用的技术栈都是最新的。
317 0
一个基于.NetCore开发、模块化、跨平台、多语言商城系统
|
人工智能 前端开发 JavaScript
提高Java开发效率:5个常用的Visual Studio代码扩展工具
对于软件工程师来说,能够更好地管理时间是一项宝贵的技能。因此,这里有5个Visual Studio代码扩展工具,可以帮助前端开发人员(以及更多的人!)将生产力至少提高10%到20%,下面和小编一起来看看吧!
188 0
提高Java开发效率:5个常用的Visual Studio代码扩展工具
|
网络协议 Ubuntu Linux
基于C++(QT框架)设计的网络摄像头项目(支持跨平台运行)
基于C++(QT框架)设计的网络摄像头项目(支持跨平台运行)
876 0
基于C++(QT框架)设计的网络摄像头项目(支持跨平台运行)