Spark技术内幕:Shuffle Map Task运算结果的处理

简介:

Shuffle Map Task运算结果的处理

这个结果的处理,分为两部分,一个是在Executor端是如何直接处理Task的结果的;还有就是Driver端,如果在接到Task运行结束的消息时,如何对Shuffle Write的结果进行处理,从而在调度下游的Task时,下游的Task可以得到其需要的数据。

Executor端的处理

在解析BasicShuffle Writer时,我们知道ShuffleMap Task在Executor上运行时,最终会调用org.apache.spark.scheduler.ShuffleMapTask的runTask:

 override def runTask(context: TaskContext): MapStatus = {
   // 反序列化广播变量taskBinary得到RDD
   val ser = SparkEnv.get.closureSerializer.newInstance()
   val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
     ByteBuffer.wrap(taskBinary.value),Thread.currentThread.getContextClassLoader)
//省略一些非核心代码
val manager =SparkEnv.get.shuffleManager //获得Shuffle Manager
    //获得Shuffle Writer
    writer= manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
//首先调用rdd .iterator,如果该RDD已经cache了或者checkpoint了,那么直接读取
//结果,否则开始计算计算的结果将调用Shuffle Writer写入本地文件系统
writer.write(rdd.iterator(partition,context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
// 返回数据的元数据信息,包括location和size
returnwriter.stop(success = true).get

那么这个结果最终是如何处理的呢?特别是下游的Task如何获取这些Shuffle的数据呢?还要从Task是如何开始执行开始讲起。在Worker上接收Task执行命令的是org.apache.spark.executor.CoarseGrainedExecutorBackend。它在接收到LaunchTask的命令后,通过在Driver创建SparkContext时已经创建的org.apache.spark.executor.Executor的实例的launchTask,启动Task: 

 def launchTask(
     context:ExecutorBackend, taskId: Long, taskName: String,serializedTask: ByteBuffer) {
   val tr = newTaskRunner(context, taskId, taskName, serializedTask)
  runningTasks.put(taskId, tr)
  threadPool.execute(tr) // 开始在executor中运行
  }

最终Task的执行是在org.apache.spark.executor.Executor.TaskRunner#run。

在Executor运行Task时,得到计算结果会存入org.apache.spark.scheduler.DirectTaskResult。

//开始执行Task,最终得到的是org.apache.spark.scheduler.ShuffleMapTask#runTask
//返回的org.apache.spark.scheduler.MapStatus
val value = task.run(taskId.toInt)
val resultSer = env.serializer.newInstance() //获得序列化工具
val valueBytes = resultSer.serialize(value) //序列化结果
//首先将结果直接放入org.apache.spark.scheduler.DirectTaskResult
val directResult = new DirectTaskResult(valueBytes,accumUpdates, task.metrics.orNull)
val ser = env.closureSerializer.newInstance()
val serializedDirectResult = ser.serialize(directResult)//序列化结果
val resultSize = serializedDirectResult.limit //序列化结果的大小

在将结果回传到Driver时,会根据结果的大小有不同的策略:

1)       如果结果大于1GB,那么直接丢弃这个结果。这个是Spark1.2中新加的策略。可以通过spark.driver.maxResultSize来进行设置。

2)       对于“较大”的结果,将其以taskid为key存入org.apache.spark.storage.BlockManager;如果结果不大,那么直接回传给Driver。那么如何判定这个阈值呢?

这里的回传是直接通过akka的消息传递机制。因此这个大小首先不能超过这个机制设置的消息的最大值。这个最大值是通过spark.akka.frameSize设置的,单位是MBytes,默认值是10MB。除此之外,还有200KB的预留空间。因此这个阈值就是conf.getInt("spark.akka.frameSize",10) * 1024 *1024 – 200*1024。

3)       其他的直接通过AKKA回传到Driver。

实现源码解析如下:

     val serializedResult = {
          if (maxResultSize > 0 &&resultSize > maxResultSize) {
// 如果结果的大小大于1GB,那么直接丢弃,
// 可以在spark.driver.maxResultSize设置
ser.serialize(newIndirectTaskResult[Any](TaskResultBlockId(taskId),
    resultSize))
          } else if (resultSize >=akkaFrameSize - AkkaUtils.reservedSizeBytes) {
// 如果不能通过AKKA的消息传递,那么放入BlockManager
// 等待调用者以网络的形式来获取。AKKA的消息的默认大小可以通过
//  spark.akka.frameSize来设置,默认10MB。
            val blockId =TaskResultBlockId(taskId)
            env.blockManager.putBytes(
              blockId, serializedDirectResult,StorageLevel.MEMORY_AND_DISK_SER)
            ser.serialize(newIndirectTaskResult[Any](blockId, resultSize))
          } else {
            //结果可以直接回传到Driver
            serializedDirectResult
          }
        }
        // 通过AKKA向Driver汇报本次Task的已经完成
        execBackend.statusUpdate(taskId,TaskState.FINISHED, serializedResult)

而execBackend是org.apache.spark.executor.ExecutorBackend的一个实例,它实际上是Executor与Driver通信的接口:

private[spark] trait ExecutorBackend {
  def statusUpdate(taskId:Long, state: TaskState, data: ByteBuffer)
}
 TaskRunner会将Task执行的状态汇报给Driver(org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend.DriverActor)。 而Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。

Driver的处理

TaskRunner将Task的执行状态汇报给Driver后,Driver会转给org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate。而在这里不同的状态有不同的处理:

1)       如果类型是TaskState.FINISHED,那么调用org.apache.spark.scheduler.TaskResultGetter#enqueueSuccessfulTask进行处理。

2)       如果类型是TaskState.FAILED或者TaskState.KILLED或者TaskState.LOST,调用org.apache.spark.scheduler.TaskResultGetter#enqueueFailedTask进行处理。对于TaskState.LOST,还需要将其所在的Executor标记为failed,并且根据更新后的Executor重新调度。

 enqueueSuccessfulTask的逻辑也比较简单,就是如果是IndirectTaskResult,那么需要通过blockid来获取结果:sparkEnv.blockManager.getRemoteBytes(blockId);如果是DirectTaskResult,那么结果就无需远程获取了。然后调用

1)       org.apache.spark.scheduler.TaskSchedulerImpl#handleSuccessfulTask

2)       org.apache.spark.scheduler.TaskSetManager#handleSuccessfulTask

3)       org.apache.spark.scheduler.DAGScheduler#taskEnded

4)       org.apache.spark.scheduler.DAGScheduler#eventProcessActor

5)       org.apache.spark.scheduler.DAGScheduler#handleTaskCompletion

进行处理。核心逻辑都在第5个调用栈。

如果task是ShuffleMapTask,那么它需要将结果通过某种机制告诉下游的Stage,以便于其可以作为下游Stage的输入。这个机制是怎么实现的?

实际上,对于ShuffleMapTask来说,其结果实际上是org.apache.spark.scheduler.MapStatus;其序列化后存入了DirectTaskResult或者IndirectTaskResult中。而DAGScheduler#handleTaskCompletion通过下面的方式来获取这个结果:

val status=event.result.asInstanceOf[MapStatus]

通过将这个status注册到org.apache.spark.MapOutputTrackerMaster,就完成了结果处理的漫长过程:

    mapOutputTracker.registerMapOutputs(
                 stage.shuffleDep.get.shuffleId,
                  stage.outputLocs.map(list=> if (list.isEmpty) null else list.head).toArray,
                  changeEpoch = true)

而registerMapOutputs的处理也很简单,以Shuffle ID为key将MapStatus的列表存入带有时间戳的HashMap:TimeStampedHashMap[Int, Array[MapStatus]]()。如果设置了cleanup的函数,那么这个HashMap会将超过一定时间(TTL,Time to Live)的数据清理掉。

如果您喜欢 本文,那么请动一下手指支持以下博客之星的评比吧。非常感谢您的投票。每天可以一票哦。


目录
相关文章
|
28天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
5月前
|
消息中间件 分布式计算 大数据
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
【大数据技术Hadoop+Spark】Flume、Kafka的简介及安装(图文解释 超详细)
77 0
|
5月前
|
SQL 分布式计算 大数据
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
【大数据技术Spark】DStream编程操作讲解实战(图文解释 附源码)
43 0
|
5月前
|
SQL 分布式计算 数据库
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
【大数据技术Spark】Spark SQL操作Dataframe、读写MySQL、Hive数据库实战(附源码)
114 0
|
5月前
|
SQL 分布式计算 大数据
【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)
【大数据技术Hadoop+Spark】Spark SQL、DataFrame、Dataset的讲解及操作演示(图文解释)
72 0
|
5月前
|
分布式计算 大数据 Apache
【大数据技术】流数据、流计算、Spark Streaming、DStream的讲解(图文解释 超详细)
【大数据技术】流数据、流计算、Spark Streaming、DStream的讲解(图文解释 超详细)
66 0
|
5月前
|
分布式计算 大数据 Scala
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
【大数据技术Hadoop+Spark】Spark RDD创建、操作及词频统计、倒排索引实战(超详细 附源码)
98 1
|
2月前
|
分布式计算 Spark 索引
Spark学习---day07、Spark内核(Shuffle、任务执行)
Spark学习---day07、Spark内核(源码提交流程、任务执行)
|
4月前
|
分布式计算 Java 调度
Spark中的Shuffle过程是什么?为什么它在性能上很关键?
Spark中的Shuffle过程是什么?为什么它在性能上很关键?
30 0
|
5月前
|
SQL 分布式计算 大数据
Hudi数据湖技术引领大数据新风口(三)解决spark模块依赖冲突
Hudi数据湖技术引领大数据新风口(三)解决spark模块依赖冲突
106 0