PostgreSQL 数据库NULL值的默认排序行为与查询、索引定义规范 - nulls first\last, asc\desc

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
云数据库 RDS SQL Server,基础系列 2核4GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
简介:

标签

PostgreSQL , NULLS FIRST , NULLS LAST , ASC , DESC , 默认行为 , sort


背景

在数据库中NULL值是指UNKNOWN的值,不存储任何值,在排序时,它排在有值的行前面还是后面通过语法来指定。

例如

-- 表示null排在有值行的前面  
select * from tbl order by id nulls first;  
  
-- 表示null排在有值行的后面  
select * from tbl order by id nulls last;  
AI 代码解读

同时对于有值行,可以指定顺序排还是倒序排。

-- 表示按ID列顺序排  
select * from tbl order by id [asc];  
  
-- 表示按ID列倒序排  
select * from tbl order by id desc;  
AI 代码解读

默认的排序规则如下:

desc nulls first : null large small    
  
asc nulls last : small large null    
AI 代码解读

当nulls [first|last]与asc|desc组合起来用时,是这样的。

值的顺序如下:

1、DEFAULT:(认为NULL比任意值都大)

desc nulls first : 顺序:null large small    
  
asc nulls last   : 顺序:small large null    
AI 代码解读

2、NON DEFAULT: (认为NULL比任意值都小)

desc nulls last : 顺序:large small null       
  
asc nulls first : 顺序:null small large       
AI 代码解读

由于索引是固定的,当输入排序条件时,如果排序条件与索引的排序规则不匹配时,会导致无法使用索引的实惠(顺序扫描)。导致一些不必要的麻烦。

索引定义与扫描定义不一致引发的问题

1、建表,输入测试数据

create table cc(id int not null);  
  
insert into cc select generate_series(1,1000000);  
AI 代码解读

2、建立索引(使用非默认配置,null比任意值小)

create index idx_cc on cc (id asc nulls first);  
  
或  
  
create index idx_cc on cc (id desc nulls last);  
AI 代码解读

3、查询,与索引定义的顺序(指NULL的相对位置)不一致时,即使使用索引,也需要重新SORT。

select * from table order by id desc nulls first limit 1;   
select * from table order by id [asc] nulls last limit 1;   
AI 代码解读

用到了额外的SORT

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from cc order by id limit 1;  
                                                                 QUERY PLAN                                                                    
---------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=27969.43..27969.43 rows=1 width=4) (actual time=263.972..263.972 rows=1 loops=1)  
   Output: id  
   Buffers: shared hit=7160  
   ->  Sort  (cost=27969.43..30469.43 rows=1000000 width=4) (actual time=263.970..263.970 rows=1 loops=1)  
         Output: id  
         Sort Key: cc.id  
         Sort Method: top-N heapsort  Memory: 25kB  
         Buffers: shared hit=7160  
         ->  Bitmap Heap Scan on public.cc  (cost=8544.42..22969.42 rows=1000000 width=4) (actual time=29.927..148.733 rows=1000000 loops=1)  
               Output: id  
               Heap Blocks: exact=4425  
               Buffers: shared hit=7160  
               ->  Bitmap Index Scan on idx_cc  (cost=0.00..8294.42 rows=1000000 width=0) (actual time=29.380..29.380 rows=1000000 loops=1)  
                     Buffers: shared hit=2735  
 Planning time: 0.098 ms  
 Execution time: 264.009 ms  
(16 rows)  
AI 代码解读

3、查询,与索引定义一致(指NULL的相对位置)时,索引有效,不需要额外SORT。

select * from table order by id desc nulls last limit 1;   
select * from table order by id [asc] nulls first limit 1;   
AI 代码解读

不需要额外SORT

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from cc order by id nulls first limit 1;  
                                                              QUERY PLAN                                                                 
---------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.42..0.45 rows=1 width=4) (actual time=0.014..0.014 rows=1 loops=1)  
   Output: id  
   Buffers: shared hit=4  
   ->  Index Only Scan using idx_cc on public.cc  (cost=0.42..22719.62 rows=1000000 width=4) (actual time=0.013..0.013 rows=1 loops=1)  
         Output: id  
         Heap Fetches: 1  
         Buffers: shared hit=4  
 Planning time: 0.026 ms  
 Execution time: 0.022 ms  
(9 rows)  
AI 代码解读

小结

在PostgreSQL中顺序、倒序索引是通用的。不同的是null的相对位置。

因此在创建索引时,务必与业务的需求对齐,使用一致的NULL相对顺序(nulls first 或 nulls last 与asc,desc的搭配)(即NULL挨着large value还是small value),而至于值的asc, desc实际上是无所谓的。 

如果业务需求的顺序与索引的顺序不一致(指null的相对顺序),那么会导致索引需要全扫,重新SORT的问题。

内核改进

1、当约束设置了not null时,应该可以不care null的相对位置,因为都没有NULL值了,优化器应该可以不管NULL的相对位置是否与业务请求的SQL的一致性,都选择非Sort模式扫描。

2、改进索引扫描方法,支持环形扫描。

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
打赏
0
0
0
0
20690
分享
相关文章
数据库索引采用B+树不采用B树的原因?
● B+树更便于遍历:由于B+树的数据都存储在叶子结点中,分支结点均为索引,方便扫库,只需要扫一遍叶子结点即可,但是B树因为其分支结点同样存储着数据,我们要找到具体的数据,需要进行一次中序遍历按序来扫,所以B+树更加适合在区间查询的情况,所以通常B+树用于数据库索引。 ● B+树的磁盘读写代价更低:B+树在内部节点上不包含数据信息,因此在内存页中能够存放更多的key。 数据存放的更加紧密,具有更好的空间局部性。因此访问叶子节点上关联的数据也具有更好的缓存命中率。 ● B+树的查询效率更加稳定:由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
38 1
PostgreSQL 9种索引的原理和应用场景
PostgreSQL 支持九种主要索引类型,包括 B-Tree、Hash、GiST、SP-GiST、GIN、BRIN、Bitmap、Partial 和 Unique 索引。每种索引适用于不同场景,如 B-Tree 适合范围查询和排序,Hash 仅用于等值查询,GiST 支持全文搜索和几何数据查询,GIN 适用于多值列和 JSON 数据,BRIN 适合非常大的表,Bitmap 适用于低基数列,Partial 只对部分数据创建索引,Unique 确保列值唯一。
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
71 6
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
69 1
|
4月前
|
数据库索引
数据库索引 1、索引:建立在表一列或多列的辅助对象,目的是加快访问表的数据。 2、索引的优点: (1)、创建唯一性索引,可以确保数据的唯一性; (2)、大大加快数据检索速度; (3)、加速表与表之间的连接; (4)、在查询过程中,使用优化隐藏器,提高系统性能。 3、索引的缺点: (1)、创建和维护索引需要耗费时间,随数据量增加而增加; (2)、索引占用物理空间; (3)、对表的数据进行增删改时,索引需要动态维护,降低了数据的维护速度。
63 2
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
789 1
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。
137 0
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
588 0
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等