MaxCompute Studio使用心得系列3——可视化分析作业运行

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 我们很熟悉的是通过Logview 去分析作业的执行情况,logview上有很详细的执行日志,而Studio不仅仅提供可视化的信息,还会明确给出一些分析结论如job是有否长尾或数据倾斜情况。

上一篇写分享了通过MaxCompute Studio 编写sql脚本时“编译”功能带来的便捷,这次分享脚本编译好提交运行后,自助查看作业的执行情况。

我们很熟悉的是通过logview,去分析作业的执行情况,logview上有很详细的执行日志,而Studio不仅仅提供可视化的信息,还会明确给出一些分析结论如job是有否长尾或数据倾斜情况。

比如我写完一个sql脚本,编译成功

image

接着执行脚本,Studio自动打开当前job的执行详细信息页面,包括job基本信息列表、详情展示和分析区(执行计划图、时序图、分析等)

image

如上图,job执行失败:

  • 界面底部RUN日志中打出具体的错误信息。
  • 详情展示区默认显示执行计划图,可以看到子任务的依赖关系,双击每一个子任务节点图,可以展开更详细的信息。
  • 即使是失败的job,也可以切换到分析tab查看具体结论,如本次执行,job有长尾。

image

可以点击具体的长尾节点查看该节点的长尾图进一步分析,相关长尾调优可以参考文档计算长尾调优

修改好sql脚本,再执行,执行成功如下图:

image

成功的任务我们依然可以分析很多信息,比如查看那个任务task耗时热点:

image

点击下面的进度条可以回放整个job执行的过程

image

可以查看耗时最长的前10个节点

image

可以查看每个子任务执行过程所有fuxi instance各种I/O信息:

image

同样的可以看到分析信息,看是否还有可优化的点。

怎么样,这样看日志是不是感觉更容易理解了呢!

对了,MaxCompute Studio也有用户钉钉支持群:

image

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
打赏
0
0
0
0
78947
分享
相关文章
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
川航选择引入 SelectDB 建设湖仓一体大数据分析引擎,取得了数据导入效率提升 3-6 倍,查询分析性能提升 10-18 倍、实时性提升至 5 秒内等收益。
从湖仓分离到湖仓一体,四川航空基于 SelectDB 的多源数据联邦分析实践
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值
58 9
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
294 15
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
230 4
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
87 4
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
625 5

相关产品

  • 云原生大数据计算服务 MaxCompute
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等